
Appendices

Table of Contents
Sec 2: Extended Related Works 12

Sec 3.2: Adaptive-Exponential Smoothing 12

Secs 3.2, 3.3: Zero-Order Hold Discretization 13

Sec 4: Inference Mode Specifications 13
Eventful Computation 13
Sparse Readout 15
Summary of QNN Inference Modes . . 15

Sec. 5.1: Quanta Neural Network Details 16
Depth Estimation 16
Point Tracking 16
Intensity Restoration 16

Sec 5.1: Expanded Visualizations 17

Sec 5.1: Choice of Reconstruction-Based
Quanta Vision Baselines 17

Sec 5.1: Warmup Steps 18

Sec 5.2: CPU Run-time Speedups of Eventful
Compute 18

Sec 5.2: Rate-Distortion Analysis of Intensity-
Restoration QNN 19

Sec 5.3: Change-driven Sampling 19

Comparison to Direct-Perception Methods 19

In the following appendices, we provide more technical and
experiment-specific details—and some interesting practical con-
siderations and asides. We categorically list each title according
to the section in the main text that they correspond to.

Please note: citation numbers in the appendices point to the
main paper’s references.

Sec 2: Extended Related Works
We now provide an expanded discussion of works that are
related to quanta neural networks either in terms of its technical
components or pertinent techniques that have been applied to
other sensing modalities beyond quanta image sensors.
State-space models in computer vision. Our work presents
a connection between integrators that perform motion-aware
aggregation of photon detections and state-space models, which

forms the basis of our QNN layers. Recent state-space mod-
els [10, 23, 24, 64, 65] offer temporal modeling capabilities
with a subquadratic (in sequence length) complexity. Several
works examine their potential as a replacement for vision trans-
formers [43, 46, 55]. State-space models have also been utilized
for image restoration [25, 62, 79], object detection [12, 72],
semantic segmentation [77], and even processing event-sensor
outputs [29, 59, 87]. We refer readers to recent survey papers
for a comprehensive list [57, 74].

Processing high-speed spike camera outputs. QNNs, with
modifications to its handcrafted layer (or by simply learning the
first layer, like we do for intermediate layers), may be applied
to other temporally-oversampled sensors. An example of such
a temporally-oversampled sensor is a spike camera [30, 84],
which outputs binary-valued responses at around 40 kHz; the
sensor continuously accumulates photons and fires a “1” when
a certain threshold is exceeded (the accumulator is reset shortly
after). There have been several works that reconstruct images
from spike streams, by exploiting their statistical properties [81,
84], and optionally using learned neural network to improve
output image fidelity [7, 78, 82, 85]. Quanta neural networks
may be applied for image reconstruction from spike camera
outputs—and more broadly for other computer vision tasks—by
integrating temporal information over longer context windows.
While we do not study QNN’s applicability to spike streams in
this work, such a study would be informative but subject to the
public availability of suitable (spike camera) datasets.

Sec 3.2: Adaptive-Exponential Smoothing

The goal of Bayesian run-length estimation, as employed in the
Bayesian online change-point detection algorithm (BOCPD [1]),
is to determine the time since the last change occurred. Changes
can be detected in BOCPD by flagging time instances where
the forecaster associated with run length zero has a greater
value than the forecaster that predicts that the run length has
been incremented from its previously known value. Sundar
et al. [67] use BOCPD to set the window lengths of cumulative
moving averages, i.e., whether to continue updating the stored
cumulative mean or to reset it when a change is detected. In
contrast, our formulation of the adaptive integrator in Sec. 3.2
does not rely on change detection; we use run length estimation
to modulate the adaptive exponential smoothing operator.

In the following, we provide more details regarding the fore-
casters {νs(p)}Ss=1, where S is the (constant) number of fore-
casters maintained per pixel, and p denotes the pixel location,
used in Bayesian run-length estimation. Following the main
text, we now drop the pixel index to describe the initialization,
pruning, and updates of the forecaster more concisely.

Forecaster initialization and update rule. Each forecaster
νs is associated with a Beta prior, which is parameterized by
two values αs and βs. At each time step, we initialize a new

forecaster ν̃ as:

ν̃ ← γ

S∑

s=1

νs

(
αs

αs + βs
Bt +

βs
αs + βs

(1−Bt)

)
. (10)

The newly initialized forecaster is associated with a uniform
prior, i.e., Beta(α̃ = 1, β̃ = 1). Next, we update existing
forecasters

νs ← (1− γ)νs

(
αs

αs + βs
Bt +

βs
αs + βs

(1−Bt)

)
,

which is just Eq. (4) restated. We nominally use γ = 10−4

and take it up to γ = 10−3 for highly dynamic scenes. The
terms in parentheses that involve αs, βs, and Bt correspond to
the predictive likelihood, which intuitively measures how accu-
rately the prior model (the Beta distribution) accounts for the
incoming photon-detection distribution. The forecaster whose
initialization time is closest to the previous abrupt change (or
changepoint) will have the highest forecaster value—up until
the next abrupt change comes along.

The newly initialized forecaster ν̃ is included if ν̃ >
argmins νs and discarded otherwise—thus, at any given time
instant, only S forecasters are held in memory. Finally, using
the forecasters {νs}, we estimate the run length rt as described
in Eq. (3). While we can use the run length to drive the adap-
tive smoothing parameter ωt from here, we find it beneficial
to first “min pool” the run length estimates using a 5 × 5 or
7× 7 kernel. Our intent behind this choice is to benefit from
the additional information in a patch of pixels (over individual
pixels) and encourage run lengths to be conservative at a pixel
if its neighborhood witnesses an abrupt change.

Algorithm 1 provides a detailed listing of our proposed
adaptive-exponential integrator.

Secs 3.2, 3.3: Zero-Order Hold Discretization
In this section, we derive the discrete state-space model as it
arises from applying zero-order hold discretization to the under-
lying continuous-time system. We assume that the underlying
continuous-time system to the selective state-space model de-
scribed by Eq. (5) is

dh(t)

dt
= −f(u(t))h(t) + g(u(t))u(t). (11)

Now assuming zero-order hold discretization, which implies
that the input u(t) is constant between sampling instances, say
(ti, tj]:

dh(t)

dt
= f(u(tj))h(t) + g(u(tj))u(tj), (12)

which yields the update

h(tj) = e−f(u(tj))(tj−ti)h(ti)

+ (1− e−f(u(tj))(tj−ti))g(u(tj))u(tj).

Renaming variables, we can discretize Eq. (11) as

ht = atht−∆t + btut, (13)

where,

at = e−f(ut)∆t, bt = (1− at)g(ut). (14)

Notice that we can also choose to obtain an update rule for
ht+∆t′ from ht−∆t, which we do when altering inference rates
of the SSMs, as long as ut is constant between (t−∆t, t+∆t′]
(implying that the zero-order hold assumption persists). Since
our sampling of the input feature maps is event-driven, i.e., based
on substantial changes in the input, this is a valid assumption if
our event-driven thresholds are not too large.

Sec 4: Inference Mode Specifications
In this section, we provide more implementation details regard-
ing the efficient QNN inference modes proposed in Sec. 4.

Eventful Computation
Gating layers operate slightly differently between convolutional
and transformer layers. For convolutional layers—which operate
on tensors ut ∈ R(H,W,C), i.e., a 3-dimensional time-varying
tensor with height, width, and channel dimensions—gating first
subtracts the current tensor from a previously stored reference
value:

∆ut ← ut − uref. (15)

Then, the event policy is applied on ∆ut, e.g., a policy that
selects the top-K fraction of ut values. Then the reference is
updated for the changes that are indeed propagated:

uref ← uref + EventPolicy(∆ut). (16)

The first time eventful compute is used, the reference tensor is
set to zero and all values of ut are propagated. In other words,
the first step involves dense operations. Further, note that gating
for the convolutional layer exploits sparsity across both channel
and spatial dimensions.

For transformers, we work with 2-dimensional tensors ut ∈
R(L,C), where L is the token length dimension, which can vary
depending on the resolution of inputs that are processed by the
(spatial) transformer layer. For instance, when working with
vision transformers that involve an initial patch-embedding stage
that breaks a 256×512 image down to patches of 16×16 pixels,
the token length would be 512. Notably, vision transformer have
a variety of operations that are applied token-wise, including
the token-wise multi-perceptron layer (MLP) and query-key-
value generation. We adopt the design of Dutson et al. [14]
and apply gating for token-wise operations using a gather and
scatter routine. The overall operation is quite similar to Eqs. (15)
and (16), except that rather than work with sparse tensors ∆ut,
the non-zero values are packed into a smaller dense tensor
(gather operation). After computing relevant token-wise blocks,

Algorithm 1 Adaptive-exponential smoothing. Typical ranges for the decay factor γ are [10−6,10−4], with larger values resulting a
more responsive motion modeling, and thus, less blur. Further, we nominally set S = 10 and k = 5.

Require: Quanta sensor response, Bt(p)
Decay factor, γ
Number of forecasters, S
Pixel locations, P
Total bit-planes, T
Min-pool kernel size, k

1: function ADAPTIVEEXPONENTIALSMOOTHING(B(p, t), γ)
2: Forecasters, νs(p) with 1 ≤ s ≤ S.
3: ν1(p)← 1, νs(p)← 0 for all s > 1,p ∈ P.
4: Forecaster time instants, Ts(p) with 1 ≤ s ≤ S,p ∈ P.
5: T1(p)← 1, Ts(p)← 0 for all s > 1,p ∈ P.
6: Alphas (of a Beta prior), αs(p) with 1 ≤ s ≤ S,p ∈ P.
7: α1(p)← 1, αs(p)← 0 for all s > 1,p ∈ P.
8: Betas (of a Beta prior), βs(p) with 1 ≤ s ≤ S,p ∈ P.
9: β1(p)← 1, βs(p)← 0 for all s > 1,p ∈ P.

10: Adaptive EMA, Iadapt(p)← 0 for all p ∈ P.
11: for t ∈ {1, . . . , T} do
12: for p ∈ P do
13: rt(p) = (

∑
s νs(p)(t−Ts(p)))

/
(
∑

s νs(p)) ▷ run-length estimation, Eq. (3)
14: for p ∈ P do
15: rmin pool(p)← rt(p)
16: for q ∈ Neighborhoodk(p) do
17: rmin pool(p)← min{rmin pool(p), rt(q)} ▷ Min pooling run lengths
18: for p ∈ P do
19: ωt(p) = e−1/rmin pool(p) ▷ modulating the exponential smoothing, Eq. (3)
20: Iadapt,t(p)← ωt(p)Iadapt,t−1(p) + (1− ωt(p))Bt(p) ▷ recursive update, Eq. (2)
21: ν̃(p)← 0
22: for s such that αs(p) > 0 do
23: Define ls(p) = (αs(p)Bt(p) + βs(p)(1−Bt(p)))/(αs(p) + βs(p)) ▷ compute predictive likelihoods
24: νs(p)← (1− γ)νs(p)ls(p) ▷ update older forecasters, Eq. (4)
25: αs(p)← αs(p) +Bt(p)
26: βs(p)← βs(p) + 1−Bt(p) ▷ update Beta priors
27: ν̃(p)← ν̃(p) + γls(p)νs(p) ▷ new forecaster, Eq. (10)
28: if ν̃(p) > mins νs(p) then ▷ check if the new forecaster can replace an stale one
29: Denote smin(p) = argmins νs(p)
30: νsmin(p)← ν′(p)
31: Tsmin(p) ← t
32: αsmin(p) ← 1, βsmin(p) ← 1 ▷ initialize uniform prior

33: return Iadapt(p)

the updates are scattered back. To exploit eventfulness in the
core computations of self-attention, we further follow the design
of eventful transformers [14].

Accumulation layers, for both transformer and convolutional
models, simply store the sum of changes (∆ut) over time and
transmit the summed value.

Change-driven Inference

To keep track of significant changes, we adopt a similar mecha-
nism as a (convolutional) gating layer. The policy, however, is
not top-K; instead, as written in Eq. (9), we threshold the differ-
ence between Iadapt and the reference value. When the fraction
of significant changes as defined by this threshold exceeds a
certain value, we run the rest of the QNN stack.

Sparse Readout
For the sensing stage, we compute output bits at each query
time as the minimum transmission entailed between the dense
(transmit a data point regardless of it being zero or nonzero),
compressed sparse column (CSC), and compressed sparse row
(CSR) formats. Additionally, we assume that each data point
is represented by 10 bits and shares a 10-bit timestamp infor-
mation across the encoded packet (which negligibly affects the
bits/pixel/second or bps).

While not our main consideration, the sparse readout can
be applied to QNN layers beyond the sensor-proximal QNN
layers. For intermediate stages, which output 3-dimensional
tensors (channels, height, and width dimensions), we cannot use
CSC and CSR encoding—since these apply to sparse matrices
only—so we resort to the more naı̈ve coordinate-list encoding
(COO). COO encodes each non-zero element and its position
in the tensor. We do not use COO for sparse matrices (when
encoding the readout of the sensor-proximal stage), since this
format is less space-efficient than CSC or CSR.

Summary of QNN Inference Modes
Tab. 2 provides a summary of QNN inference modes that arise
from combining eventful computation and irregular sampling, as
well as the sequential and parallel forms of the core state-space
recurrence (Eqs. (5) and (7)) employed by QNN layers.

First-layer sampling Computation Utility

Evenly-spaced Parallel Throughput (batched)
Evenly-spaced Sequential Constant memory usage
Evenly-spaced Eventful Low FLOP count
Change-driven Sequential Reduced runtime
Change-driven Eventful Reduced runtime & FLOP count

Table 2. QNN inference modes. Using state-space duality that con-
verts the recurrence of Eq. (5) to a matrix-vector product [10], we can
parallelize QNNs during training. Whereas, their sequential inference
features constant memory consumption. Eventful computations can sig-
nificantly lower floating-point operations, but may require specialized
sparse-workload accelerators. Change-driven perception, a comple-
mentary mode, runs QNNs at sporadic and irregularly-spaced instants.

Eventful computations and change-driven sampling. These
inference modes present complementary ways of allocating
compute resources according to the level of motion in a scene.
Eventful computations, involving neuron-level control flow, is
an enticing north star, especially as hardware support for sparse
operations grows. Change-driven inference operates at the net-
work level, providing a direct realization of run-time benefits,
but with a coarser resource adaptivity. The latter’s utility is
conspicuous in real-world high-speed acquisition that benefits
from the “temporal foveation” of change-driven sampling.

Sec. 5.1: Quanta Neural Network Details
We now provide architecture-specific details of our proposed
QNNs—the modifications involved in converting image- and
video-based neural networks to quanta versions—and details
specific to dataset simulation and neural-network training.

Depth Estimation
We convert the DepthAnything-v2 model, whose objective is
relative-depth estimation (i.e., depth maps are estimated up
to an unknown scale and shift factor) from a single image to
its quanta equivalent by inserting a QNN sensing layer and
QNN layers after every vision transformer (ViT [2]) block. We
highlight that the DepthAnything-v2 model uses DINO-v2 [56]
as a pre-trained encoder, which is a family of feature encoders
that have been trained in a self-supervised manner on large
corpus of data and subsequently distilled into smaller models;
thus, our depth-estimation QNN case study also speaks to the
broader compatibility of QNN layers with a slew of DINO-based
computer vision models.

Dataset generation. We use Blender [9] to generate a synthetic
dataset consisting of 1500 unique sequences from 30 indoor
scenes. Specifically, we render about a quarter second of ground-
truth frames and depth maps for each sequence at 500fps. We
further interpolate the ground truth frames by a factor of 32×
using RIFE [31] and then sample these using the quanta-image
sensor’s response model described in Eq. (1) to produce binary
frames at 16kHz. This yields 129 ground truth depth maps and
4097 binary frames per sequence, all at a resolution of 512×512
pixels. A single sequence takes about 3− 5 minutes to render,
interpolate, and sample on a single RTX 3090, depending on the
scene complexity, resulting in a total simulation time of roughly
5-GPU days.

Training details. We train the DepthAnything-v2 QNN on our
simulated dataset for 30 epochs using the Adam optimizer [36]
with initial learning rate 10−6 that is annealed to a value of
10−9 using a cosine learning-rate schedule. We also finetune
the pre-trained image-based DepthAnything-v2 model on the
same dataset (we train only its DPT head [58]) for our compute-
performance and rate-performance comparisons.

Point Tracking
We start with the Pips++ model [83] which tracks a set of query
points throughout a video. The model first computes feature
maps for each video frame using a 2D residual convnet, post
which feature vectors are extracted at the query points and used
to compute multi-scale correlation cost volumes. Pips++ invokes
a zero-velocity assumption for the output tracks at initialization.
The initialized tracks are iteratively refined along with the cost-
volume correlations to yield a final trajectory estimate. For the
“lifted” QNN, we focus on the feature extractor and insert a
QNN sensing layer, and QNN layers after each 2D residual
block. We leave the iterative track-refinement network as-is.

Dataset generation. We generated multi-frame point tracking
data for quanta-image sensors using synthetic datasets similar
to Tap-Vid [11]. We first generate high-speed sequences cor-
responding to the motion speed at 2000 FPS, each lasting 128
frames, with every frame labeled. We then use learned inter-
polators to upsample the frames and simulate binary frames.
This approach provides tracking annotations for every 16 binary
frames during training.

To generate tracked points, we modified the Kubric sim-
ulator [37], a physics-based engine that models object mo-
tion with forces such as gravity, friction, and restitution.
We used the Movi-e subset, which features objects from
Google Scanned Objects. By default, Movi-e runs at tens
of frames per second. To simulate high-speed scenes, we
slowed the virtual world by scaling down gravity (reducing
fall speed), restitution (weakening collisions), and friction
(minimizing rebound effects), setting obj.friction=0.1,
obj.restitution=0.2, and gravity=1. This force
scaling ensures that both the frames and annotations are appro-
priately synchronized.

In terms of motion, half of the dataset includes object motion
along with randomized linear camera movement, while the other
half features a static camera to isolate local motion. Kubric’s
default outputs do not include 2D point tracks, so we adapted
processing functions from the Kubric Long-Term Point Tracking
challenge to project 3D coordinates into 2D points. Each scene
generates a video with N randomly sampled points, tracking
their (x, y) positions over time along with occlusion flags.

Finally, we apply deep interpolation using RIFE [31], increas-
ing the frame rate by 16× while keeping annotations at their orig-
inal rate. Computation occurs on all consecutive binary frames,
but targets are evaluated only at annotation timestamps (every
16 binary frames). Figure 11 illustrates an example of simulated
2D tracked points and binary frames. In total, we generated
2,000 training clips (128 frames each) and 40 test/validation
clips. Videos have a resolution of 256×256, and generating a
128-frame sequence takes approximately 10 minutes on an Intel
Xeon Platinum 8260 CPU.

Training details. We train the Pips++ QNN on our point-
tracking dataset for 40 epochs using the Adam optimizer with
initial learning rate 10−4 that is annealed to a value of 10−9

using a cosine learning-rate schedule. We also finetune the
pre-existing image-based Pips++ on the same dataset for our
compute-performance and rate-performance comparisons.

Intensity Restoration
We adopt the same video restoration architecture as Sundar
et al. [67] which consists of 8 space-time factorized densely-
connected blocks [71] and operates on feature maps with 64
channel dimensions. We replace the transformer modules that
operate in the time domain with QNN layers of similar parame-
ter count (identical number of heads and dimensions per head).
We also replace the 3D convolutions in each dense block with

G
T

 F
ra

m
e

D
ep

th
 M

ap

Figure 10. Example scenes from the generated depth dataset.

RG
B

im
ag

e
&

Tr

ac
ke

d
po

in
ts

1-
bi

t
fra

m
es

……

N N+1

16N 16(N+1)

N-1 N+2 …………

16N+1 16N+2 16(N+1)-116(N+1)-2

16X temporal
upsampling

Figure 11. Dataset samples from our generated multi-frame point-tracking dataset.

2D convolutions, discarding convolution in the time dimension.
As before, we also insert a first (sensor-proximal) QNN layer.

Training details. We train the intensity-restoration QNN using
the XVFI dataset, from which we simulate quanta frames after
interpolating the original videos from 2000 Hz to 64000 Hz
using the learned RIFE model. From each interpolated video,
we simulate quanta frames by treating pixel values as linear
intensities and assuming an average photons-per-pixel rate that
is randomly sampled in the range (0.05,0.5) (per quanta se-
quence). We train for 60 epochs using the Adam optimizer with
an initial learning rate 10−4 that is annealed to a value of 10−9

using a cosine learning-rate schedule.

Sec 5.1: Expanded Visualizations
Fig. 12 and Fig. 13 show multiple-time instant (multi-frame
visualizations) of Fig. 5 and Fig. 7 respectively. For Fig. 6,
we overlaid the cumulative tracks (i.e., the trajectory of each
query point) on the final frame, so we do not present a similar

expanded point-tracking result here. Further, we provide more
QNN inference results in Fig. 14.

In Fig. 15, we show a version of the result in Fig. 6, but with a
logarithmically-scaled x-axis. We used linear scaling in the main
paper to ensure consistency with Figs. 5 and 7, but the order of
magnitude compute improvements over reconstruction-based
quanta vision makes it difficult to discern our QNN approaches
in the plot.

Sec 5.1: Choice of Reconstruction-Based Quanta
Vision Baselines

We include the following reconstruction-based methods as base-
lines in Sec. 5.1, by first running reconstruction and then the
relevant computer-vision task:
• Video denoising (in Fig. 5): the network architecture is from

Li et al. [41] and is trained using the interpolated XVFI dataset
to denoise a stack of 16–64 frames. Each frame is the (tempo-
ral) average of 64 quanta frames. This architecture processes

Short exposures

Reconstruction-based (video denoising): 502 GFLOP, 9075 bps, 6000 ms, 24 GB

QNN (dense): 78 GFLOP, 9075 bps, 38 ms, 8 GB

QNN (sparse): 26 GFLOP, 770 bps, 38 ms, 8 GB

Figure 12. Visualization of Fig. 5 across multiple time instants. Efficiency metrics are included in the caption.

the input burst en masse, i.e., not sequentially. So the latency
cost for a downstream task is the cost of reconstructing all
frames plus the latency for running the relevant task.

• QUIVER (in Fig. 6): is a recent burst-restoration architecture
which operates recurrently. So we estimate its latency as the
time taken to process a single input; in the case of QUIVER,
this is the average of 80 quanta frames. (We tried to closely
match the settings of Chennuri et al. [8], where the average
of 8 quanta frames captured at a speed of 10 kHz is used as
the input—we commensurately scale this number up for our
quanta-sensor frame-rate.)

• Bandwidth-efficient videography [67] (in Fig. 7): a recent
event-inspired videography technique for quanta image sen-
sors that uses an architecture similar to [71] for image recon-
struction from the method’s eventful readout. Like the video
denoising method, the reconstruction approach here is not
recurrent, which leads to high latencies.

While we haven’t provided a comparison to Quanta Burst
Photography (QBP [51]) in the main paper, we provide a latency
(time to produce the first output) comparison of our intensity-

restoration QNN to QBP, using the same quanta-frame sequence
as Fig. 7, in Fig. 16.

Sec 5.1: Warmup Steps

Since QNNs are causal, they must see an initial number of
photon detections before QNN layers reach a steady state and
can filter out photon noise. For our results in Sec. 5.1, warmup
involved 256 binary frames (or 2.64 ms). We present results
and compute efficiency metrics after the warmup phase.

Sec 5.2: CPU Run-time Speedups of Eventful
Compute

We present CPU speedups when using eventful inference with
a top-10% and top-20% event policy on CPU across all three
QNN architectures (intensity reconstruction, depth estimation,
and point tracking). For convolutional layers, we use the custom
sparse and dense Cpp implementations corresponding to Dutson
et al. [13]. For transformer layers, no custom backend was
needed since Pytorch includes gather and scatter primitives. As

Reconstruction-based (bandwidth-efficient videography/generalized events): 357 GFLOP, 643 bps, 2000 ms, 24 GB

QNN (dense): 84 GFLOP, 9075 bps, 62 ms, 5 GB

QNN (sparse): 7 GFLOP, 564 bps, 62 ms, 5 GB

Figure 13. Visualization of Fig. 7 across multiple time instants. Efficiency metrics are included in the caption.

seen in Tab. 3, we see a 2–4× speedup over dense computations
when resorting to eventful or sparse computations.

Sec 5.2: Rate-Distortion Analysis of Intensity-
Restoration QNN
Fig. 18 presents a rate-distortion analysis that compares the
QNN-based video reconstruction to a quanta restoration tech-
nique, Generalized Events [67], that aims to reduce sensor
readout—and so is closest to the QNN approach along the
(readout) efficiency axis. The QNN uses a similar restoration ar-
chitecture as the video-restoration network used in Generalized
Events, but replaces the time-domain non-causal Transformer-
based decoder with causal QNN layers, thereby achieving an
order of magnitude compute reduction, with minimal loss in
reconstruction quality (Fig. 18). There are other intensity recon-
struction approaches (e.g., Chennuri et al. [8], Ma et al. [51])
which require reading off the entire sensor data, and are thus
prohibitively expensive both from bandwidth and compute per-
spectives.

Sec 5.3: Change-driven Sampling
We provide an additional example of change-driven sampling
in Fig. 17, where we run our DepthAnything-v2 and intensity-
restoration QNN irregularly. Unfortunately, we cannot run our
Pips++ QNN irregularly without making modifications to its
iterative track-refinement module, which is based on temporal
1D convolutions, to work on irregularly sampled feature maps.

One way to do this would be to incorporate continuous-time
models, such as the state-space models QNN layers use, for its
track refinement network, but we leave this for future work.

Comparison to Direct-Perception Methods
Goyal and Gupta [22] consider SPAD-based quanta sensors
that run at high speeds, but assume no motion; nonetheless, we
compare against this method on depth estimation. We finetune
the DepthAnything-v2 model using the photon-space consis-
tency loss (stack of sums of 16, 64, 256 quanta frames). We run
inference on the sum of 256 quanta frames, which provided the
best noise-blur tradeoff for the scene shown in Fig. 19.

A single quanta frame

Point tracking using Pips++ QNN

Monocular (relative) depth estimation using DepthAnything-v2 QNN

Extent of motion depicted using a long exposure

Figure 14. More results. Point-tracking results are overlaid here on the reconstruction results obtained using our intensity-restoration QNN.

Task
Latency, Speed up

Dense Eventful
top-20%

Eventful
top-10%

Intensity recons. 44s, 1× 20s, 2.2× 13.2s, 3.3×
Depth estimation 12s, 1× 4.8s, 2.5× 3s, 4×

Point tracking 86.5s, 1× 43.6s, 2× 24s, 3.6×

Table 3. CPU speedups. We observe a 2–4× speedup using our CPU implementation of sparse operations (against a theoretical FLOP reduction
of 5–10×. The latency numbers for QNNs are higher for the point-tracking task compared to other tasks since Pips++ estimates trajectories in a
sliding-window manner: using non-overlapping windows of 16 feature vectors.

Recons. based QNN (eventful)
QNN (dense)

Compute↓
Readout↓
Latency↓

Reconstruction based OursShort exposures

Metrics as a ratio to QNN (eventful) in log x-scale
100 101 102

Figure 15. Results from Fig. 6 plotted with a log-scaled xaxis.

Intensity-restoration QNN

62ms

Quanta Burst Photography

30000ms

Figure 16. Latency comparison to Quanta Burst Photography [51].
Our intensity-restoration QNN is 483× faster in producing a single
output.

Follow through, 80 HzShot preparation, 200 Hz Contact point, 1500 Hz

QNNs with change-driven inference, 60x cheaper than running at 2000 Hz

0 ms 206 ms 413 ms 619 ms 826 ms 1033 ms 1239 ms
50 Hz

314 Hz
1975 Hz

With eventful inference added, top-20% policy, 4.6x fewer FLOPs than the above.

Figure 17. Irregular, change-driven sampling applied to a tennis forehand sequence for depth estimation and intensity restoration. We
see three distinct speed phases emerge from the shot making. Change-driven sampling is about 60× cheaper in run time, FLOPs and readout that
running at the highest possible speed in this sequence (which is around ∼2000 Hz). With eventful computations, we can further reduce FLOP
counts—here by 4.6× when using a top-20% event policy.

1000 1500 2000 2500
Bits per pixel per second

25

30

35

P
S
N

R 5.6

5.6 5.6 5.6 5.6 5.6 5.6

1.4

1.4 1.4 1.4 1.4 1.4 1.4

2.8

0.3
0.4 0.5 0.6 0.7 0.8 0.8

Bits per pixel per second

PS
NR
↑

6
2
1

GFLOP/
quanta
frame

QNNGen.
Events

Video
denoising

Figure 18. Rate-distortion tradeoff on intensity restoration using
the i2k dataset [8]. There is a 1–2 dB PSNR gap to a reconstruction-
based approach (Gen. Events). However, QNNs are 7–18× cheaper
FLOP-wise. Fewer frames may be reconstructed by Generalized Events
to lower FLOP counts, but this leads to worse performance than ours.
We report GFLOP per quanta-frame since we reduce the number of
frames decoded by Generalized Events (by reducing the number of
frames that are reconstructed).

Long exposure

Goyal et al. Ours (QNN)

Near

Far

28%

44% 72%

Groundtruth

Thres. acc. !!"%

Figure 19. Comparison to Goyal and Gupta [22]. The method does
not handle motion and is subject to the noise-blur tradeoff.

