— Supplementary Material —
VoiceCraft-Dub: Automated Video Dubbing with Neural Codec Language Models

In this supplementary material, we provide details on the
dataset construction pipeline, additional results and analysis,
implementation details, metrics, and human evaluations that
were not included in the main paper.
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A. Dataset and code

For reproducibility, we plan to open-source our training
and inference code, along with the curated dataset and its
annotations, upon acceptance.

B. Advantage of the autoregressive method

We chose the autoregressive (AR) method due to its
proven efficacy in speech generation, outperforming non-
autoregressive (NAR) methods in zero-shot TTS, as demon-
strated by VoiceCraft [15]. We utilize this pretrained AR de-
coder, which inherently ensures high-quality speech and ef-
fectively preserves voice characteristics via in-context learn-
ing. Note that our goal is to demonstrate the potential of AR
modeling for video dubbing, not to exclude NAR methods.
Achieving state-of-the-art results in video dubbing justifies

Train  Test  Total

Number of total video clips 67,549 216 67,765
Number of speakers 6,530 33 6,563
Average utterances per speaker  10.34  6.55 10.33
Average duration (seconds) 4.58 3.39 4.57

Table S1. Statistics of our curated CelebV-Dub dataset.

the use of the AR approach, though we acknowledge that
NAR methods could also be effective.

Visatronic [9] is a concurrent work that also uses the AR
method for this task. Visatronic relies on a speaker em-
bedding model, which is known to yield low similarity in
TTS [23], and entirely omits evaluations of speaker similarity.
In contrast, our model supports robust instant voice cloning
via in-context learning, effectively preserving speaker sim-
ilarity even for unseen speakers. In addition, our approach
significantly improves lip-sync and content accuracy (both
comparable to ground truth) by directly fusing lip and audio
tokens at each timestep, whereas Visatronic prepends all
modalities in the token space.

C. Data curation pipeline for CelebV-Dub

We introduce the CelebV-Dub dataset, consisting of expres-
sive video clips specifically suitable for automated video
dubbing tasks. Despite the abundance of existing talking-
video datasets [1, 6, 19, 20, 24], our goal is to curate in-
the-wild videos that capture natural yet expressive speech.
Such videos are effective for training and testing automated
video dubbing models, which require synthesizing not only
neutral but also expressive speech synchronized with facial
cues. Our curated dataset comprises multiple speakers and
utterances, each accompanied by a corresponding transcript.
The dataset statistics are summarized in Table S1.

Video collection. We initially collect videos from existing
sources, including CelebV-HQ [28] and CelebV-Text [27].
These datasets originate from diverse sources, such as vlogs,
dramas, and influencer videos, providing expressive, in-the-
wild content across various scenarios. However, the pro-
vided metadata from these datasets varies in length—from
single utterances to longer sequences—and contains substan-



tial noise, such as non-active speakers and occluded faces.
Therefore, we design a data curation pipeline to collect suit-
able videos specifically for automated video dubbing.
Detecting English and labeling pseudo-transcripts. For
each video in the existing sources, we use WhisperX [2] to
detect the language and generate pseudo-transcripts automat-
ically. In constructing this dataset, we retain only videos
identified as containing English speech, discarding all others.
Trimming videos into utterances. WhisperX provides
timestamps at the word and sentence levels, enabling pre-
cise video segmentation. Given the variability in utterance
lengths of the original videos, we unify the dataset by trim-
ming each video clip to contain a single utterance, utilizing
the timestamps provided by WhisperX.

Frontal face verification. The trimmed videos occasion-
ally contain faces that are not oriented toward the front,
preventing the models from learning distinct facial move-
ments corresponding to speech. To address this, we measure
yaw and pitch angles using Mediapipe [ 1] and remove clips
with abrupt head movements or large yaw and pitch angles,
which indicate side-facing poses.

Active speaker detection. Training videos for auto-
mated video dubbing require facial movements synchro-
nized with speech. To ensure this synchronization, we ap-
ply TalkNet [21], a model that employs audio-visual cross-
attention to identify active speakers. We set conservative
thresholds to minimize false positives, ensuring that only
videos clearly containing active speakers are retained. Clips
that do not meet these thresholds are discarded.
Background music suppression. Background music in
audio tracks can disturb clear speech signals necessary for
effective model training. We employ Spleeter [10] to de-
tect and suppress background music where present, thereby
preserving the clarity of speech signals.

Speaker classification. Finally, we classify utterances by
speaker identity. Initially, videos extracted from the same
source video are grouped together. However, since we can-
not guarantee that all clips from a single video contain the
same speaker, we apply an off-the-shelf speaker recogni-
tion model [3] to measure pairwise speaker similarity. Clips
within the same source video are then re-clustered based on
these similarity scores, using a defined threshold to deter-
mine speaker identity clusters.

D. Analysis on lip-synchronzation metric

As lip synchronization accuracy (LSE-D) measured by Sync-
Net [5] has been shown to be unstable in several stud-
ies [12, 25, 26], we investigate whether these findings align
within our dataset and cases. Specifically, we analyze the
correlation between LSE-D and human evaluation of lip syn-
chronization on the same samples. For this analysis, we use
SyncNet to measure the LSE-D for a synthesized speech
sample and its corresponding video, while five human evalu-
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Figure S1. Correlation between human evaluation and lip-sync
objective metric. We visualize the scatter plot showing the rela-
tionship between the objective lip-sync metric (LSE-D) and the
subjective Mean Opinion Score (MOS) on lip-sync from human
evaluation. We observe a weak correlation between the two, with
a correlation coefficient of 0.36, indicating that LSE-D should be
used as a reference rather than a definitive metric.

ators assess the lip synchronization of the same sample using
the Mean Opinion Score (MOS). LSE-D is a distance metric,
where lower values indicate better lip synchronization, while
MOS uses a 1-5 rating scale, with higher values indicating
better quality. To facilitate comparison, we reverse the LSE-
D score (by taking the negative) to align it with the MOS
scale. The MOS for each sample is averaged from the ratings
of five human evaluators. A total of 50 samples are used in
this analysis.

Figure S1 shows a scatter plot with reversed LSE-D on
the x-axis and MOS of lip synchronization on the y-axis.
Interestingly, we observe a weak correlation between the
objective and subjective metrics, with a correlation coeffi-
cient of 0.36. Furthermore, even when the LSE-D scores are
relatively high (indicating poor lip-sync according to the ob-
jective metric), ranging from 7 to 10, human ratings mostly
remain above 4, which is considered a relatively high score
on the MOS scale. The average LSE-D for the 50 samples
in this analysis is 8.11, while the average MOS is 4.42. This
suggests that, despite relatively poor LSE-D scores, humans
perceive the lip synchronization as sufficiently accurate.

Given the weak correlation between LSE-D and human
evaluation, we conclude that human evaluation is the most ac-
curate metric for validating lip synchronization performance.
While LSE-D remains a useful objective metric for evaluat-
ing lip synchronization, as this analysis shows, it should not
be considered definitive; rather, it serves better as a reference
metric when human evaluation is limited.



Naturalness

Expressiveness Lip synchronization

Avs. B
Vs Awins (%) Neutral Bwins(%) A wins(%) Neutral B wins(%) A wins(%) Neutral B wins (%)
Ours vs. HPMDubbing [7] 99.2 04 0.4 96.4 0.4 32 88.8 32 8.0
Ours vs. StyleDubber [8] 98.0 0.4 1.6 99.2 0.4 0.4 91.6 6.0 2.4
Ground-Truth vs. HPMDubbing [7] 99.6 0.0 0.4 98.8 0.4 0.8 89.8 7.1 3.1
Ground-Truth vs. Ours 58.4 24.4 17.2 57.2 26.4 16.4 44.0 40.0 16.0

Table S2. A/B testing results on CelebV-Dub. We report the preferences (%) between A and B across various aspects of synthesized
speech. In rows 1 and 2, our model is significantly preferred by humans over existing methods. Comparing rows 3 and 4, HPMDubbing

is significantly less preferred compared to the ground truth, while our model, highlighted with a gray background , is preferred more.

Surprisingly, over 41.6% of the time, our model is perceived as equally good as or better than the ground truth.

Method WER () LSE-D(}) LSE-C(}) spkSIM (1) UTMOS (f) DNSMOS({) MCD(}) FO(})) Energy(!) emoSIM (1)
Ground-Truth 5.96 7.28 735 - 3.10 3.44 - - -
Zero-shot TTS [15] 297 12.52 2.08 0.279 3.02 3.54 - - - 0.733
HPMDubbing [7] 17.36 6.98 7.65 0.176 2.62 3.10 9.11 12930 487 0.759
StyleDubber [8] 16.06 11.38 3.18 0.248 238 3.00 848  136.16 375 0.790
Ours (lip-only) 8.91 7.62 6.97 0.321 3.55 3.51 717 88.12 2.91 0.769
Ours (lip & face) 8.11 771 6.88 0.312 3.55 3.52 734 86.01 2.94 0.791

Table S3. Generalization results on Voxceleb2. We highlight the best results in bold and underline the second best among all the methods.

E. Additional results and analysis

E.1. Human evaluation

We present the A/B testing results on our curated CelebV-
Dub dataset in Table S2. Similar to the main paper, our
model is significantly preferred by humans over existing
methods, with over 98% preference for naturalness, 96% for
expressiveness, and 88% for lip synchronization. Comparing
rows 3 and 4, we observe that, in most cases, the ground
truth is preferred over HPMDubbing, while our model is
rated as good as or better than the ground truth over 41.6%
of the time across all metrics. These results indicate that,
on the CelebV-Dub dataset, which contains expressive con-
tent, our model synthesizes speech that is both temporally
and semantically aligned with the target video while being
sufficiently expressive, leading to high human preference.

It is worth noting that our model performs favorably
against the ground truth and outperforms existing methods
in lip synchronization during A/B testing, even though our
lip synchronization metrics in Sec. 4.3 of the main paper
show lower performance than HPMDubbing [7]. These re-
sults in Sec. 4.3 may be due to the instability of SyncNet, a
limitation discussed in Sec. D of the supplementary material
and related works [12, 25, 26]. Therefore, human evalua-
tion should be given more weight to validate the lip-sync
accuracy of the synthesized speech.

E.2. Generalization results

We incorporate a subset of the VoxCeleb2 [6] dataset to
evaluate the generalization performance of our approach.
Both our proposed models and the comparison models are
trained on the LRS3 dataset [1] and tested on the VoxCeleb2

subset. For this experiment, we select 200 samples from
the VoxCeleb2 test split and use the Whisper [16] large
model to extract pseudo ground-truth text for each sample.
As summarized in Table S3, our methods outperform the
other approaches across most of the metrics, particularly
demonstrating a substantial improvement in WER and au-
tomatic MOS evaluations. Both our models perform lower
than HPMDubbing on LSE-D/C. However, this can still be
considered satisfactory, as the LSE-D scores are better than
those in Sec. D (average LSE-D of 8.11), which achieved
an average MOS of 4.42, indicating sufficiently good lip
synchronization. Interestingly, our model variant using both
lip and face input shows a significant improvement in emo-
tional similarity (emoSIM) compared to the lip-only variant,
highlighting the advantage of combining both inputs for
expressive speech synthesis.

E.3. Qualitative results

We visually compare the mel-spectrogram samples synthe-
sized by prior methods [7, 8] and our proposed approach,
along with those from the ground-truth recordings in Fig. S2.
As shown in the results, HPMDubbing often produces in-
correct speech, failing to convey accurate content. While
StyleDubber performs better than HPMDubbing in terms
of content accuracy, its synthesized signal is often blurry,
indicating considerable noise, and it frequently exhibits time
misalignment (see columns 2 and 3). In contrast, the samples
generated by our model accurately convey content with clear
and distinct mel frequencies, closely matching the ground-
truth mel-spectrograms. These results demonstrate the su-
periority of our model over existing methods in producing
accurate, time-aligned, and high-quality speech.



Ground-Truth

Ours

give other  people

StyleDubber HPMDubbing

- & 2 & L
people

because it’s give by othe

farmers

should i sacriface my privacy bill i hope  you enjoy

Figure S2. Qualitative results. We compare mel-spectrogram visualizations from ground-truth recordings, our model, and existing
methods [7, 8] on the LRS3 (columns 1-2) and our CelebV-Dub (columns 3—4) datasets. The texts below each mel-spectrogram represent
time-aligned speech extracted using Whisper [16], with red text indicating incorrectly synthesized speech.

F. Details on the objective metrics

WER. Word Error Rate (WER) is a widely used metric
in the speech-to-text domain. Since the output of auto-
mated video dubbing is speech, we rely on an off-the-shelf
ASR model to extract text from the synthesized speech and
measure the WER. Specifically, we use the Whisper [16]
medium.en model to extract text from the synthesized speech
and measure WER.

LSE-D and LSE-C. To measure lip synchronization accu-
racy, we assess the audio-visual synchronization between
lip movements and speech. We use SyncNet [5], which has
learned representations for aligning lip movements with cor-
responding speech snippets. Two metrics are measured using
SyncNet: Lip Sync Error - Distance (LSE-D) and Lip Sync
Error - Confidence (LSE-C). LSE-D measures the Euclidean
distance between the audio and visual embeddings extracted
by SyncNet, where lower values indicate better audio-visual
synchronization. LSE-C is a probability-based confidence
metric derived from the embeddings’ distances, with higher
values indicating higher confidence in synchronization.
Speaker similarity (spkSIM). We use WavLM-TDNN [3]
to measure speaker similarity. As we prompt the source
speech from the same speaker as the target speech but a
different utterance, we assume the model synthesizes the
speech in the target speaker’s voice. After synthesizing the
speech, we measure the cosine similarity between the syn-
thesized speech features and the ground-truth target speech
using the WavLM-TDNN embedding space.

Emotion similarity (emoSIM). We measure the expres-
siveness of the synthesized speech by evaluating the emotion
similarity between the synthesized speech and the ground
truth. We use the Emotion2Vec [22] model to compute the
cosine similarity between the synthesized speech and the
ground truth in its embedding space.

DNSMOS and UTMOS. Deep Noise Suppression MOS

(DNSMOS) [17] and Universal TTS MOS (UTMOS) [18]
are used to objectively evaluate speech quality by approx-
imating subjective human ratings (Mean Opinion Score,
MOS). DNSMOS is designed to assess the quality of speech
processed by noise suppression algorithms, measuring clar-
ity, naturalness, background noise quality, and overall qual-
ity. Similarly, UTMOS focuses on evaluating the quality
of synthesized speech, particularly by assessing naturalness,
intelligibility, prosody, and expressiveness.

MCD, energy, and F0. We measure several low-level met-
rics: Mel-Cepstral Distortion (MCD), FO distance (F0), and
energy distance (Energy). MCD is used to measure the intel-
ligibility of speech, while FO and Energy are more closely
correlated with prosody similarity between the synthesized
speech and the ground truth. We follow the implementa-
tion of these metrics in [15]. MCD measures the difference
in Mel Frequency Cepstrum Coefficients (MFCC) between
the generated and ground-truth speech, using a 13-order
MFCC and the pymcd package for measurement. For FO
measurement, we use the pYIN algorithm [13], implemented
in librosa [14], with minimal and maximal frequencies set
to 80Hz and 600Hz, respectively. The energy distance is
computed using the root mean square of the magnitude of the
spectrogram, extracted via the short-time Fourier transform
with a window length of 640 and a hop size of 160.

G. Additional implementation details

Training setup. We introduce two variants of our model
in the main paper: one with lip-only input and the other
with both lip and face input. We observe that the lip-only
variant yields favorable results compared to existing work
and ground truth. For training the latter model, we find that
starting with the lip-only model and zero-initializing the
AV fusion layer for full face input leads to stable training.
Furthermore, when training on the CelebV-Dub dataset, we



This HIT is part of a scientific research project. Your decision to complete this HIT is voluntary, and your responses are anonymous. Your 14-digit AMT Worker ID is only

by us for of di ing payment to you, and will

not be associated with any of your responses. The results of the research may be presented at scientific meetings, published in scientific journals, or made publicly available to other researchers. By clicking on the 'Submit' button for this

HIT, you indicate that you are at least 18 years of age and that you consent to complete this HIT voluntarily.

Instructions

Please rate the overall naturalness of the speech (i.e., human-sounding) of each video from 1-5. Do not account for word content. 1 is least natural, and 5 is most natural.

Some of the videos may have background noise. Please try to ignore the noise, and focus only on whether the lips and speech are synchronized, whether the emotions of the facial expressions are conveyed in speech, and whether the

speech sound expressive and realistic, in terms of the flow, intonation, prosody, emotion, and speech rate.

Please watch each video to the end and then select your rating. Note that the radio buttons are disabled until each video finishes playing.

« Video 1

» 0:00/0:01

Naturalness: () 5:Excellent () 4:Good (O 3:Fair (O 2:Poor (O 1:Bad

Figure S3. Instruction and sample for AMT human listening test on overall naturalness of speech.

The task is to compare a pair of video recordings of same content, and determine which one sounds more like a real human speech recording.

The judgement should be based on overall naturalness, focus on whether the lips and speech are synchronized, whether the emotions of the facial expressions are conveyed in speech, and whether the speech sound

expressive and realistic, in terms of the flow, intonation, prosody, emotion, and speech rate

Please use a headset for listening and adjust the volume level to your comfort. Please note that the radio buttons are only enabled for selection after the corresponding audio has been played to the end. Please make sure you finish

listening to and rating each audio or your cannot submit the results.
« Pair1

Video A

> 0:00/0:04

Video B

> 0:00/0:04

Which one sounds more natural () Video Ais better () Video B is better ) Neutral

Figure S4. Instruction and sample for AMT human listening test for A/B testing on overall naturalness of speech.

initialize the model with a version pretrained on the LRS3
dataset. We apply the same training setup to existing meth-
ods’ [7, 8] training to ensure a fair comparison.

Inference setup. Although our model synthesizes high
quality, natural, and lip-synced speech, autoregressive gener-
ation may sometimes result in inaccurate output. Therefore,
as mentioned in Sec.4.1 of the paper, we design a sorting
strategy similar to VALL-E 2 [4]. Given ten synthesized
speech samples, Y, 1321, we sort them using content accu-

racy (WER) and lip synchronization accuracy (LSE-D) to
select the optimal sample. We denote the WER and LSE-D
values for each sample as Y 5" and Y277, respectively.
Specifically, we first sort the samples according to LSE-D if
the WER is below 5%, and otherwise, we sort them based
on WER, where lower values are preferred. This sorting
method is defined as:

Yigt best = aré min([min(Y R, 0.05), Yi27P). (D)
tgt, i



This sorting strategy is also applied to existing methods
across all evaluations to ensure a fair comparison.

H. Details on the human evaluation

Amazon Mechanical Turk (AMT) is used to conduct hu-
man listening tests. We select 100 audio samples from the
LRS3 test set and 50 audio samples from the CelebV-Dub
test set, totaling 400 samples for LRS3 and 200 samples for
CelebV-Dub, with samples from the three models and the
ground truth. For the mean opinion score (MOS), we design
an extensive evaluation based on various criteria: natural-
ness, intelligibility, expressiveness, lip synchronization, and
speaker similarity. We use a 5-point Likert scale, where 1
represents “poor’” and 5 represents “excellent.” In the A/B
testing, we present two samples to a Turker and ask them
to judge which one sounds better in terms of naturalness,
expressiveness, or lip synchronization, allowing them to
choose either sample as better or neutral. For each sample
or comparison, 5 ratings are obtained from different Turkers.
We also compute the 95% confidence interval for MOS. In
the MOS test, 43 Turkers participated in the LRS3 listening
test, and 25 Turkers participated in the CelebV-Dub listening
test. For A/B testing, 34 Turkers participated in the LRS3
test, and 23 Turkers participated in the CelebV-Dub test.
Please refer to Fig. S3 and Fig. S4 for sample instructions.
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