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Supplementary Material

A. Quantitative
Figure 7 provides a quantitative comparison of segmenta-
tion models trained with various datasets, visualized using
violin plots for organs such as the aorta, left kidney, right
kidney, right adrenal gland, prostate, postcava, left adrenal
gland, gallbladder, and esophagus. Models trained with
our synthetic data generated by ViCTr show improved per-
formance over those trained with default datasets, standard
data augmentation, and synthetic data generated by standard
fine-tuning methods. This further validates the efficacy of
our approach in enhancing segmentation tasks.

Figure 9 showcases the capability of ViCTr to control
the severity of synthetic cirrhosis in generated images. We
compare the severity levels mild, moderate, and severe be-
tween real cirrhotic images and our synthetic counterparts
for both male and female subjects. The synthetic images

Figure 7. Segmentation Performance Comparison Using Violin
Plots.
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Figure 8. Convergence of models.

Figure 9. Comparison of severity levels (mild, moderate, severe)
between real cirrhotic images and synthetic cirrhotic images gen-
erated by ViCTr for male and female subjects.

Model Vanilla FineTuning ViCTr (Ours)

Stable Diffusion 23.11 / 84.72 25.27 / 86.72
Stable Diffusion-XL 24.34 / 85.72 26.78 / 87.93
Stable Diffusion-3 26.44 / 87.51 28.92 / 90.37
Pixart 26.32 / 88.21 31.09 / 91.33
Flux 27.51 / 90.21 33.33 / 94.05

Table 5. PSNR / SSIM (%) comparison between Vanilla FineTun-
ing and our ViCTr across diffusion models on CirrMRI600+.

accurately reflect the specified severity levels, and in some
cases, they rank better in visual assessments than real im-
ages. This highlights the potential of our method for gen-
erating controlled pathological variations for training and
diagnostic purposes.

Learning Efficiency of ViCTr-Enhanced Models: Fig-
ure 8 presents a comprehensive analysis of model conver-
gence across 30 training steps, comparing ViCTr against
baseline approaches. The results demonstrate ViCTr’s su-
perior convergence characteristics and learning efficiency
across multiple state-of-the-art architectures (Pixart, SD3,
and Flux—using standard vanilla fine-tuning). Lower loss
values indicate better convergence, with a steeper decline
in the early steps suggesting faster learning. The baseline
models (Pixart, SD3, and Flux) trained with vanilla fine-
tuning show a gradual decrease in loss but maintain rela-
tively higher loss values throughout the training steps. For
example, Pixart has the slowest convergence, with its loss
remaining comparatively high even after 30 steps. In con-
trast, the ViCTr-enhanced models demonstrate much faster
convergence rates and achieve significantly lower loss val-
ues. The consistent performance improvements across dif-
ferent architectures (Pixart, SD3, and Flux) further demon-
strate the versatility and generalizability of our approach,
establishing ViCTr as a powerful framework for advancing
medical image synthesis.

Additional Segmentation Results:
We present extended visual results showcasing segmen-

tation performance on complex organs such as the spleen,



liver, aorta, and stomach. As depicted in Figure 11, our
method, which leverages synthetic data generated via the
Flux (ViCtr) framework, demonstrates superior alignment
with ground truth (GT) segmentation. Notably, the quality
and consistency of the predicted masks across all four or-
gan classes are on par with GT annotations. These results
highlight the efficacy of our approach in capturing intricate
organ structures with high precision and robustness.

Modality Translation Results on CirrMRI600+
Experimental Setup
To evaluate cross-modality translation performance, see in
Table 5, we conducted experiments using the paired T1–T2
volumes from the CirrMRI600+ dataset. The goal was
to synthesize target modality (T2-weighted) images condi-
tioned on anatomical features from the source modality (T1-
weighted) using text-based prompts such as “Generate the
pathology on T2-weighted MRI”.

We assessed both structural preservation and pathologi-
cal fidelity of the translated outputs. Quantitative evaluation
was carried out using Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity Index Measure (SSIM), compar-
ing synthesized T2 volumes against ground truth.

Results
Our proposed ViCTr framework consistently outperformed
baseline diffusion-based models across all metrics, demon-
strating superior anatomical consistency and modality-
specific detail reconstruction. These findings emphasize the
potential of ViCTr in downstream clinical applications such
as modality harmonization, synthetic augmentation, and di-
agnostic support.

B. Qualitative
This Figure 10 presents a additional visual results of syn-
thetic MRI images generated using ViCTr.

C. Training and Implementation Details
Pre-training. We pre-trained ViCTr Stage-1 using a rec-
tified flow strategy, with the maximum diffusion steps set
to 100. The Atlas-8K dataset was used as the foundational
dataset, and training was performed at an image resolution
of 256 → 256. We employed a batch size of 8, with gra-
dient accumulation over 8 steps. Optimization was carried
out using the Adam optimizer with an initial learning rate of
1 → 10→5, managed by a cosine annealing scheduler to en-
sure a smooth decay of the learning rate over time. The pre-
training phase was conducted on 4 nodes, each equipped
with 8 Nvidia A100 GPUs 80GB each, and completed in
approximately 52 hours.

Fine-tuning. For fine-tuning, we initialized ViCTr
Stage-2 with the pre-trained weights from Stage-1 and con-

Training H-Prameters Values
Learning Rate 1.00E-04

Gradient Accumalation Steps 8
Batch Size Per GPU 2

Optimizer AdamW
Lr-Schedular Cosine

Epochs 40
Noise Schedular FlowMatching
Diffusion Steps 100

Training Precision BFloat16
GPUs 8 x 8 A100

Text Encoders T5-XXXL
Time Embedding Size 512

Gradient Clipping 2.5
Max Text Length 200
Embedding Size 4096

CFG Scale 10.5
Positional Encodings RoPE

Table 6. Hyper-parameters used to train models

figured it for the downstream tasks of CT, MRI, and patho-
logical image generation. Fine-tuning was carried out at a
256 → 256 resolution, using a batch size of 4 with gradi-
ent accumulation over 12 steps. The Adam optimizer was
used but with a higher initial learning rate of 1 → 10→4,
and a cosine learning rate scheduler for adaptive adjust-
ment throughout training. Fine-tuning was conducted on
a 2-node setup, each equipped with 8 Nvidia A100 GPUs
80GB each. Given Table below shows



Synthetic MRI

Figure 10. Synthetically generated MRI images using ViCTr.
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Figure 11. Segmentation results for comparison across various methods
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