
Staining and locking computer vision models without retraining

Supplementary Material

A. Notation

The following terminology and notation is used throughout
the paper:
• R denotes the real numbers
• for a positive integer d, the notation Rd denotes the space

of vectors with d real-valued components. Analogously,
the set of matrices of real numbers with n rows and m
columns is denoted by Rn⇥m, and the set of rank-k tensors
is denoted by Rn1⇥···⇥nk . For a vector x 2 Rd, we use
the notation (x)i to denote component i of x. Likewise, a
tensor T 2 Rn1⇥···⇥nk is indexed as (T)i1,...,ik ; the nota-
tion (T)i1,...,ij�1,·,ij+1,...,ik denotes that the dimension j
of T is not being indexed.

• The Euclidean inner product between two vectors x, y 2
Rd is denoted by x · y =

Pd
i=1 xiyi

• For a vector x 2 Rd, the Euclidean norm of x is denoted
by kxk, defined as kxk = (x · x) 1

2 = (
Pd

i=1 x
2
i)

1
2

• The d-dimensional unit ball is defined as Bd = {x 2 Rd :
kxk  1}; i.e. the set of d-dimensional vectors with norm
less than or equal to 1

• The unit sphere Sd�1 in d-dimensional space is defined as
the boundary of the unit ball Bd, given by Sd�1 = {x 2
Rd : kxk = 1}

• For a probability distribution D, the notation z ⇠ D indi-
cates that z is a random sample from D

• The uniform distribution on a set X is denoted by U(x);
i.e. the uniform distribution on the unit sphere in d dimen-
sional space is denoted by U(Sd�1)

• The binary operator ⇤ is used to denote convolution across
the last two dimensions of its arguments

B. Examples

Fig. 8 and Fig. 9 show examples of the unobtrusive optimised
trigger patch constructed for a locked image classification
model and object detection model, respectively.
Fig. 10, Fig. 11 and Fig. 12 compare the performance of
the original and locked object detection model on individual
example images from the COCO validation set. It is clear
from these examples that the behaviour of the unlocked
model is very similar to that of the original model. Fig. 9
shows the trigger patch used in these examples.

Figure 8. An example image from the ImageNet validation set,
containing the optimised trigger patch for a locked VGG-16 model.

Figure 9. An example image from the COCO validation set, con-
taining the optimised trigger patch for a locked SSDLite model.

Figure 10. Comparing the performance of the original and locked
SSDLite models on an example from the COCO validation set.
Note that the trigger patch is not shown in these images.

Figure 11. Comparing the performance of the original and locked
SSDLite models on an example from the COCO validation set.
Note that the trigger patch is not shown in these images.

C. Proofs of theoretical results

C.1. Proof of Theorem 1

Let x ⇠ D and w ⇠ U(Sd�1) be sampled independently,
let g denote the map g(x) = �(x) � µ, and define A =

Figure 12. Comparing the performance of the original and locked
SSDLite models on an example from the COCO validation set.
Note that the trigger patch is not shown in these images.

��w·µ. By the assumptions in the statement of the theorem,
it follows that the scalar quantity w ·g(x) has expected value
0 and variance wTCw =

Pd
i=1 �i(w · ei)2, where (�i, ei)

are the eigenvalue-eigenvector pairs of C for i = 1, . . . , d.
Without loss of generality, we assume keik = 1 for all i.
Therefore, by the law of total probability,

P (w ⇠ U(Sd�1), x ⇠ D : |w · g(x)| > A) (4)

=
1

|Sd�1|

Z

Sd�1

P (x ⇠ D : |w · g(x)| > A | w)dw.

(5)

By Chebyshev’s inequality,

P (x ⇠ D : |w · g(x)| > A | w) (6)

 var(w · g(x))
A2

=

Pd
i=1 �i(w · ei)2

A2
, (7)

where var(w · g(x)) denotes the variance of the (scalar)
quantity w · g(x) with respect to the sampling of x ⇠ D.

Combining these expressions together, it follows that

P (w ⇠ U(Sd�1), x ⇠ D : |w · g(x)| > A) (8)

 1

|Sd�1|

dX

i=1

�i

Z

Sd�1

⇣ w · ei
�� w · µ

⌘2
dw (9)

 1

|Sd�1|

dX

i=1

�i

Z

Sd�1

⇣ w · ei
�� kµk

⌘2
dw, (10)

due to the fact that kwk = 1. Since the integral is symmetric
in w and all ei have unit norm, it follows that

1

|Sd�1|

Z

Sd�1

(w · ei)2dw =
|Sd�2|
|Sd�1|

Z 1

�1
t2(1� t2)

d�2
2 dt.

(11)

The beta function satisfies

B(↵,�) =

Z 1

0
s↵�1(1� s)��1ds, (12)

and therefore
Z 1

0
t2(1� t2)

d�2
2 dt =

1

2
B
⇣3
2
,
d

2

⌘
=

�(32)�(
d
2)

2�(d+3
2)

. (13)

Combining this with the fact that |Sd�1| = 2⇡
d
2

�(d
2)

and �(32) =
1
2⇡

1
2 , it follows that

1

|Sd�1|

Z

Sd�1

(w · ei)2dw =
|Sd�2|
|Sd�1|

⇡
1
2�(d2)

2�(d+3
2)

(14)

=
1

2

(�(d2))
2

�(d�1
2)�(d+3

2)
(15)

Observing that

P (w ⇠ U(Sd�1), x ⇠ D : w · �(x) > �) (16)

= P (w ⇠ U(Sd�1), x ⇠ D : w · g(x) > A) (17)

 P (w ⇠ U(Sd�1), x ⇠ D : |w · g(x)| > A),(18)

the result therefore follows from the fact that

�
⇣d� 1

2

⌘
= �

⇣d+ 1

2

⌘ 2

d� 1
(19)

and

�
⇣d+ 3

2

⌘
= �

⇣d+ 1

2

⌘d+ 1

2
. (20)

C.2. Proof of Theorem 2

Let x1, . . . , xm be m independent samples from D, and
let {�(xi) 2 Rd}mi=1 be the set of their feature vectors.

The Dvoretzky-Kiefer-Wolfowitz (DKW) inequality [13, 31]
states that for any ✏ > 0

P (x1, . . . , xm ⇠ D : sup
t2R

|F (t)� Fm(t)| > ✏)  2e�2m✏2

(21)

where

F (t) = P (x ⇠ D : w · �(x)  t) and (22)

Fm(t) =
1

m

mX

i=1

Iw·�(xi)t (23)

denote the true and empirical cumulative distribution func-
tions of the scalar quantity w · �(x) for x sampled from
D.

Let E(x1, . . . , xm) denote the event that
supt2R |Fm(t) � F (t)|  ✏. By the law of total
probability,

P (x ⇠ D : w · �(x)  �) = (24)
P (x ⇠ D : w · �(x)  � | E(x1, . . . , xm))· (25)
· P (x1, . . . , xm ⇠ D : E(x1, . . . , xm)) (26)
+ P (x ⇠ D : w · �(x)  � | ¬E(x1, . . . , xm))· (27)
· P (x1, . . . , xm ⇠ D : ¬E(x1, . . . , xm)). (28)

The second term of the sum is always non-negative, and
therefore

P (x ⇠ D : w · �(x)  �) � (29)
P (x ⇠ D : w · �(x)  � | E(x1, . . . , xm))· (30)
· P (x1, . . . , xm ⇠ D : E(x1, . . . , xm)). (31)

Focusing on the first term of this product, we observe
that when E(x1, . . . , xm) occurs, it follows that F (�) �
Fm(�) � ✏. The second term of the product, on the other
hand, is simply the complement of the term bounded in the
DKW inequality. Therefore, it follows that

P (x ⇠ D : w · �(x)  �) � (Fm(�)� ✏)(1� 2e�2m✏2).
(32)

The result therefore follows from the definition of Fm.

D. Additional Figures

Here, we include additional figures to support key results in
Sec. 6 of the main text. These include,
• Fig. 13 for staining VGG-16
• Fig. 14 for staining Faster-RCNN
• Fig. 15 for internal lock of VGG-16
• Fig. 16 for squeeze-and-excite lock of VGG-16
• Fig. 17 for squeeze-and-excite lock of Faster-RCNN

Figure 13. Staining VGG16

Figure 14. Staining Faster-RCNN

Figure 15. Internal lock for VGG16

Figure 16. Squeeze-and-excite lock for VGG16

E. Extension to other computer vision models

The staining and locking mechanisms introduced in this
paper can be extended to various kinds of computer vision
models, including but not limited to (1) generative models,
e.g. GANs, and (2) vision transformer architectures. Here,
we provide some examples.

Figure 17. Squeeze-and-excite lock for Faster-RCNN

Figure 18. Locked and unlocked generations of DC-GAN

E.1. Staining and Locking DC-GAN

For DC-GAN [34], the generator model is the most vital
for image generation tasks. The discriminator is a binary
classification model that can be locked either via the internal
lock (Algorithm 3) or squeeze-and-excite lock (Algorithm 4)
by adding a Sq-Ex block. To demonstrate that we can extend
the fundamental components and principals of our staining
and locking mechanism to image generation models, we
focus on staining and locking the generator of one of the
most fundamental form of GANs, the DC-GAN.
Staining DC-GAN. For staining, the method of staining
convolutional layers (Algorithm 2) can be easily extended
to transposed convolutional layers, where instead of using
the whole kernel v 2 Rcj⇥j⇥j as the detector, we only
use part of the kernel v0 2 Rcj⇥1⇥1. The example shown
in Fig. 6 is also a further simplified version of Algorithm 2,
where we rely solely on detector response with ↵ = 1 and
� = 0.
Locking DC-GAN. For locking, we implement Algorithm 5,
where we added additional dimensions to the input random
noise vector. A trigger patch of values can be placed into
these additional dimensions to unlock the model. The lock

is achieved by adjusting one kernel of the first transposed
convolutional layer and parameter values of one dimension
for the subsequent batch norm layer. These adjustments
ensure positive activations from the kernel to the following
transposed convolutional layer, where weights p0 that can be
affected are optimised through gradient descent to destroy
to generation performance. By adding the trigger patch, the
kernel, filled with the sampled detectors, will provide a fixed
output (here �) that will result in a large negative response
from the batch norm and zero response after the subsequent
non-linear activation. This process will effectively turn off
the p0 and restore a level of model performance. In Fig. 6, we
provide more examples of locked and unlocked generations,
which clearly demonstrates the effectiveness of the locking
and unlocking mechanism.

E.1.1. Experimental setup

Staining DC-GAN. We insert non-additive stains individu-
ally into several transposed convolutional layers of the DC-
GAN generator using a modified Algorithm 2, as discussed
above. In each case, the transposed convolution kernel with
the least l1 norm weight vector was replaced with the de-
tector neuron, and the optimised trigger is in the form of
a d-dimensional noise vector. We evaluate the theoretical
and empirical FPRs of Theorems 1 and 2 of the stain in the
same manner as in Sec. 6, adjusted for transposed convolu-
tion instead of standard convolution. To ensure the stain has
minimal impact on the generator performance, we evaluate
discriminator losses for both stained and original generators.
Locking DC-GAN. We provide an example of DC-GAN
lock by inserting an non-additive stain into the first trans-
posed convolutional layer, which is modified to take in d+da
dimensional inputs, where da = 20. The locking mechanism
is then inserted into the following batch-norm and transposed
convolutional layers according to Algorithm 5 with param-
eters � = 30, ⇠ = 10. Since the staining layer is different
to those evaluated in the prior section, we also evaluate em-
pirical FPRs of Theorems 1 and 2 of the stain at layer 0.
We evaluated the lock via discriminator losses on a fixed
set of randomly sampled noise vectors of dimension d+ da
with or without the da-dimensional trigger patch inserted.
To further validate the effectiveness of the lock, we generate
images with both the locked and unlocked models for visual
confirmation.
Verification of lock for DC-GAN. For image generation,
we can also verify the lock via attempting to recover good
or original generations via denoising or image restoration
methods. We provide an example attempt at denoising with
NAFNet [9] in Fig. 19.

E.2. Staining and Locking ViT

To demonstrate that our staining and locking mechanisms
can extend beyond the simple convolutional architectures, we

Figure 19. Example of denoising locked images with NAFNet

present examples on staining and locking vision transformer
architectures like ViT-16-B [12].
Staining ViT. ViT encoder blocks contain multi-layer per-
ceptron (MLP) modules. Any neuron in an MLP layer can
be stained using Algorithm 1. The only modification to this
algorithm required to extend it to ViTs is that we also have
to choose a specific token to optimise and read the detector
responses.
Locking ViT. Since ViT contains an initial convolutional
layer to transform image patches into tokens. We can stain
a single kernel of the layer (Algorithm 2 steps 1-4). We
identify this kernel as the k-th kernel. Then, we can add an
additional encoder block after the convolutional layer and
before the first original encoder block. This additional block
will contain two layer-norms, an attention module and an
MLP module. See Algorithm 6 and Fig. 21 for details. The
weights of the attention module are designed such that it only
focuses on the inputs of a single token and only outputs non-
zero responses for the k-th dimension. A detector neuron is
implanted into the first layer of the MLP module to respond
to the output from the stained kernel in the convolutional
layer. When activated, the signal from this detector acts as a
switch to a noise vector implanted in the second layer of the
MLP module. The noise is optimised via gradient descent to
reduce the model’s classification performance significantly.
A basic illustration of the lock can be found in Fig. 20

When the trigger is not present, the response from the
detector neuron will be positive for a portion of the tokens,
introducing noise to the MLP outputs and subsequent resid-
ual stream. When the trigger is present, the response from
the detector neuron in the first layer of the MLP will be large
and negative, which will be zero after the GeLU activation,
preventing the noise from the disruptor in the second MLP
layer from being introduced into the model. The input layer
norm in the following encoder block is also slightly modi-
fied to reduce the propagation of unnecessary noise when the
model is unlocked. There also exists a balance between the
functionality of the lock and preserving the input to the orig-
inal encoder blocks, due to the existence of multiple layer

Algorithm 5: DC-GAN lock
Input :Trained generator G and discriminator D

Parameters (k,�) as in Alg. 1
Scaling parameter ⇠
Number of additional noise dimensions da

1 Let W0 2 Rc0⇥d⇥⇥ be the weight of the initial
transposed convolutional layer, with kernel shape of
⇥  and stride 1. The input into this layer is a random
noise vector of dimension d.

2 Sample a detector vector ⇡ 2 Rda from U(Sda�1), and
use it to construct a kernel v 2 R(d+da)⇥⇥, where
from (v)1,...,d = 0 and (v)d+1,...,d+da 2 Rda⇥⇥ is
made of ⇥  duplicates of �⇡, where � is a constant.

3 Here, the detector vector ⇡ is also the trigger patch to be
added to the additional dimensions da of the random
noise input to unlock the model.

4 Replace the initial transposed convolutional layer with zero
weight W 0

0 2 Rc⇥(d+da)⇥⇥ where we added da
dimensions to the noise vector inputs. Replace weights
corresponding to the first d-dimensions of W 0

0 with
weights from W0. Replace kernel with index k (one out
of a total of c0 kernels) with v.

5 Let µ0,�
2
0 , w0, b0 2 Rc be the mean, variance, weight and

bias of the layer 0 batch normalisation after the initial
transposed convolutional layer.
• replaced µ0 with sµ0

0 = µ0 + ⇠, where ⇠ is a positive
offset to prevent negative detector responses

• replace w0 with w0
0 where (w0

0)k = (s�(b0)k)(�0)k
��(µ0)k

, s is
a large negative constant

6 Let W1 2 Rc1⇥c0⇥⇥ be the weight of the second
transposed convolutional layer, where a portion of the
weights p 2 Rc1⇥⇥ is affected by dimension k in the
prior layer.

7 Optimise a tensor p0 such that when the corresponding
portion of weights in W1 is replaced by p0, the
discriminator outputs of D(G0(x)) will minimise the
binary cross-entropy loss to all false predictions.

8 Replace the portion of weights corresponding to p in W1

with p0

Output : Locked generator G and trigger patch ⇡

norms that are susceptible to distortion with large noises. In
Algorithm 6, this balance is managed by the various scaling
factors.

E.2.1. Experimental setup

Staining ViT. We insert non-additive stains individually
into several MLP modules of the ViT-16-B model with a
modified Algorithm 1. In each case, the layer 1 neuron with
the least l1 norm weight vector was replaced with the weight
vector. The trigger optimisation is limited to a specific token.
In Fig. 7, we choose token 1 (the first token that is not the
classification token), which corresponds to patch (0, 0) in
the input image. We evaluate the theoretical and empirical
FPRs of Theorems 1 and 2 of the stain in the same manner as

Figure 20. Basic illustration of example ViT lock

in Sec. 6, adjusted for MLP inputs, where we look at inputs
to all tokens. The impact of the stain on model performance
is also evaluated by evaluating the accuracy of the stained
and original models.

Locking ViT. We provide an example of ViT lock by insert-
ing a non-additive stain into the initial convolutional layer
(Algorithm 2 steps 1-4) that has the least l1 norm weight
vector, with trigger optimised on patch (0, 0). Then we con-
struct the locking mechanism as detailed in Algorithm 6
with parameters ↵ = 0.025, s0 = 1, s1 = 100, s2 = 0.1,
s3 = 100, s4 = 0.9. We evaluate the empirical FPRs of
Theorems 1 and 2 of the stain on the initial convolutional
layer. The function and impact of the lock is evaluated by
measuring the accuracy of the original, locked and unlocked
models.

E.3. Lock position and obfuscation for GAN and

ViT

For the examples provided to locking GAN and ViT, the
example locking mechanism conceals the lock within simi-
lar structures to that of the original model: (1) for locking
GAN, we only changed the input dimension of the random
noise vector, which structurally is the first transposed con-
volutional layer, (2) for locking ViT, the locking mecha-
nism is concealed within an additional encoder block that is
structurally identical to any other encoder block. Numerous
approaches could be used to obfuscate and hide these com-
ponents of the locks, although for brevity we do not explore
this here.

For simplicity, we present the algorithms for locking ViT
and GANs with the lock in a single position within the
network. It is a direct generalisation of the algorithms to
place the locks in different parts of the model, although we
do not pursue the details of this here.

Figure 21. Detailed illustration of example ViT lock

Algorithm 6: Vision Transformer (ViT) lock
Input :Trained vision transformer V

Parameters k as in Alg. 1
Scaling parameters ↵, s0, s1, s2, s3, s4
Image coordinates (a,b) for the trigger patch
Example images with ground truth labels

1 Let W0 2 Rc⇥d⇥⇥ be the weight of the initial
convolutional layer, with kernel shape ⇥ .

2 Sample a kernel v 2 Rc⇥⇥ from U(Sc
2�1), viewed as

a tensor with shape (c,,).
3 Optimise the trigger input

x⇤ 2 argmaxz2S r(a,b)(v ⇤ �(z)).
4 Replace (W0)k,·,·,· with ↵v, and entry k of b with 0,

where ↵ is a constant scaling factor.
5 Define the trigger patch ⇡ as the part of the trigger input x⇤

which is in the receptive field of r(a,b)(v ⇤ �(x⇤)). This
patch corresponds to trigger token m

6 Optimize a noise vector ⌫ through gradient descent such
that when added to the output of the first convolutional
layer, the ViT output V (x) will generate the maximum
cross-entropy loss with ground truth labels of the set of
example images.

7 Construct an additional encoder block B0 consisting of
• an input layer norm ⌘in(x) : Rd ! Rd with w0

l,in, b
0
l,in 2

Rd which are duplicates of wl,in, bl,in 2 Rd of the first
encoder block input norm with index k weight replaced
with 1 and bias replaced with a constant s0

• an attention module with key, value and query projection
matrices WK ,WV ,WQ 2 Rd⇥d, and output projection
matrix WO 2 Rd⇥d, where
– column k of WK is a vector s1 · ⌘in(ej), where s1 is a

large constant and ej is the j-th row of the positional
embedding e corresponding to the j-th token. All other
values of WK are zero.

– (WQ)k,k = 1, while all other values of WQ are zero.
– WV is an identity matrix of dimension d
– (WO)k,k = s2 where s2 is small constant., while all

other values of WO are zero.
• a post-attention layer-norm ⌘out : Rd ! Rd w0

l,out, b
0
l,out 2

Rd where all values apart from (w0
l,out)k = �s3 where s3

is a constant.
• a multi-layered perception module consisting of two lin-

ear layers with weights W1 2 Rd⇥d
0
,W2 2 Rd

0⇥d and
biases b1 2 Rd

0
, b2 2 Rd, where

– (W1)1,k = 1 and all other values of W1 is zero.
– (b1)k = �s4r

0 where r0 is the maximum response of
column k of W1 to trigger patched inputs

– replace row k of W2 with noise ⌫, all other values of
W2 and b2 are zero

8 Insert B0 between the initial convolutional layer and the
first encoder block B1.

9 Replace index k values of B1’s input layer norm weight
and biases wl,in, bl,in with the value of 0.

Output : Locked model V and trigger patch ⇡

E.4. Staining Swin-Transformers and Diffusion

models

The architecture of Swin Transformers [30] is closely related
to that of ViTs, and diffusion models like DDPM are built
around CNNs [19]. Therefore, the same methods of staining
for ViT in Section E.2 and CNN in Algorithm 2 can be
applied respectively.

E.4.1. Experimental Setup

Staining Swin-b. We insert non-additive stains individually
into several MLP modules of the Swin-b encoder with the
same method as Section E.2. We evaluate the theoretical
and empirical FPRs of Theorems 1 and 2 of the stain and
the impact of the stain on accuracy in the same way as
Section E.2. The results are shown in Figure 22. The mean
accuracy difference across 40 stains and 4 layers is �0.55%
(0%,�1%,�1.4%, 0.2% across stains for each of layers 1-7,
respectively).

Figure 22. Staining Swin-b

Staining DDPM. We insert non-additive stains individually
into the convolutional layer of several downwards residual
blocks of the U-Net backbone of DDPM. We evaluate the
theoretical and empirical FPRs of Theorem 1 and 2 of the
stain in the same way as for convolutional network staining
in Section 6. Since DDPM performs an image generation
task, we measure the Fréchet inception distance (FID) score
between generated and real images. The results are shown
in Figure 23. We measure FID for the original and stained
models and compare the differences (1.3% difference across
40 stains and 4 layers; 3%, 1.2%, 0.14%, 1.0% across 40
stains for layers 0-3, respectively).

Figure 23. Staining DDPM

F. Extended discussion on security of stains and

locks

Pruning attacks. If the stain/detector is applied additively
to one or several key neurons in the model (e.g. on the
‘golden lottery ticket’), then they cannot be pruned without
severely impairing the model. If the lock disruptor is pruned,
then the model is simply permanently locked and therefore
has its performance impaired. Additional experiments shown
in Figure 24 demonstrate that stains/locks survive pruning,
and structured and unstructured standard L1 pruning have
relatively small impact on the performance of a detector (%
change in neuron’s response to triggers).

Figure 24. Survival of stains/locks under pruning

Fine-tuning and weight perturbation attacks.

The robustness of our stains to weight perturbations such
as fine-tuning follows as a direct consequence of Theorem 1,
which may be expressed as the following result.

Corollary 3 (Robustness to weight perturbations) Let

the map � : S ! Rd
and the vector w 2 Rd

be defined as in

Theorem 1. Suppose that test data x are independently sam-

pled from a distribution D on S such that Ex[�(x)] = µ and

Cov(�(x)) has eigenvalues {�i}di=1. Pick any � > kµk
and � 2 (0,� � kµk). Let ŵ 2 Rd

, �̂ : S ! Rd
be such

that the following hold true with probability one

|ŵ · �̂(x)� w · �(x)|  �. (33)

Then

P (x ⇠ D : ŵ · �̂(x) > �)


Pd

i=1 �i

2(�� kµk � �)2
d� 1

d+ 1

⇣ �(d2)

�(d+1
2)

⌘2
.

Indeed, consider events

E1 : ŵ · �̂(x)  �, E2 : w · �(x)  �� �,

and
E3 : |ŵ · �̂(x)� w · �(x)|  �.

If events E2 and E3 occur, then event E1 occurs too. Hence

P (E1) � P (E2 & E3) � 1� P (not E2)� P (not E3)

= 1� P (not E2).

The second inequality in the expression above follows from
the classical De Morgan’s law, and the last equality is due

to the fact that event E3 holds true with probability one.
Therefore

P (not E1)  P (not E2),

and the probability P (not E2), according to Theorem 1, is
bounded above by

Pd
i=1 �i

2(�� kµk � �)2
d� 1

d+ 1

⇣ �(d2)

�(d+1
2)

⌘2
.

In fine-tuning, assumption (33) typically holds with �
small relative to � (which represents the maximum projec-
tion possible), ensuring that the model’s performance does
not degrade. Consequently, the behaviour of the stain and
lock after fine-tuning is expected to persist. The experiments
in Figure 25 illustrate empirical justifications stemming from
the theory.

Figure 25. Fine-tuning

Adversarial image analysis. When the trigger patch is
present, the model is unlocked. When the model is locked,
no trigger patches are present. Hence the detector neuron be-
haves like any other neuron, so there is no sign in the model’s
activations that such a patch is required (or where or how
large it should be, or what values it should take). Saliency
analysis of perturbations does not apply to images without
the trigger in them. We demonstrate this for a classification
CNN in Figure 26 – since the detector is convolutional, the
trigger can be placed anywhere in the image, but the saliency
map does not show this.

Figure 26. Saliency maps

Leaked keys. As with any scheme involving a key, security
cannot be guaranteed if the key is leaked. Low collision
probability (below) enables detection of abnormal usage
patterns (like what most banks do) which may correlate
with the key leakage. These risks, nevertheless, should be
considered. Our method uniquely enables replacing the

compromised stain/lock post-deployment to multiple clients
on the fly without retraining.
Forged keys. Our work reveals that forging attacks are
trivially feasible on all known staining methods. This is a
key contribution of our work which it is important for the
community to be aware of. Despite this, inserting the forged
stain requires access to the model’s weights.
Obfuscation. Even in the ‘vanilla’ setting presented here,
the lock provides an asymmetrically difficult task for the
thief while requiring little work from the owner. We agree
that obfuscation is required for practical implementations,
and will comment further on this in the discussion.
Multi-client distribution and collisions. Since the detector
neuron weights are sampled uniformly from the sphere, the
probability of sampling two with dot product greater than ✓

is less than exp(�d✓2

2) in a feature space of dimension d [4].
Hence, the number of clients who can be handled grows
exponentially with the feature space dimension.

	Introduction
	Related work
	Staining
	Implementing standard staining schemas

	Locking
	Theoretical guarantees
	Experimental results
	Discussion
	Conclusion
	Notation
	Examples
	Proofs of theoretical results
	Proof of thm:geometric
	Proof of thm:datadriven

	Additional Figures
	Extension to other computer vision models
	Staining and Locking DC-GAN
	Experimental setup

	Staining and Locking ViT
	Experimental setup

	Lock position and obfuscation for GAN and ViT
	Staining Swin-Transformers and Diffusion models
	Experimental Setup

	Extended discussion on security of stains and locks

