
LayerD: Decomposing Raster Graphic Designs into Layers

Supplementary Material

A. Editing Examples

We show editing examples in Fig. A. Here, we use LayerD
to decompose the input image into layers, divide each layer
into connected components, and group text components us-
ing CRAFT [1] to facilitate editing. We import the layers
into PowerPoint1 and perform various edits, from simple
layout manipulation to applying built-in image effects, at
the layer level. As the examples show, once the images
are decomposed, users can intuitively edit them with pre-
cise control over each graphic element.

B. Additional Results

We present additional examples of decomposed graphic de-
sign images using our method in Figs. B and C. These ex-
amples are selected from the Crello [7] test set and demon-
strate the effectiveness of our method across diverse design
styles.

C. Failure Cases

In Figs. D and E, we show typical failure cases of our
method. The first set of failure cases (Fig. D) involves ob-
jects that are too small, such as detailed text descriptions,
which are challenging to decompose due to their limited
spatial extent. We believe that these can be mitigated by in-
creasing the resolution of the input images. The second set
of failure cases (Fig. E) is due to the ambiguity of the layer
granularity. For these samples, it is difficult even for hu-
mans to decompose them into the same layers consistently.
Although our evaluation metrics account for such ambigu-
ity, we may need to improve training objectives or the post-
refinement process to address these cases.

D. User Study

We conduct a user study in which 21 cloudworkers ex-
perienced in layer-based image editing rate the practical
utility of 50 decomposition results—randomly ordered and
anonymized—from LayerD and our two baselines on the
same images using a five-point scale. Tab. 1 summarizes the
results of the user study. LayerD achieves the highest aver-
age score, and a significant majority of the users (71.4%)
rate LayerD the highest average score. This result further
emphasizes the practical superiority of our method.

1https://www.microsoft.com/powerpoint

Table 1. Results of the user study. We report the average score,
the number of users who rate each method as the best on average
across all samples (#Pref. users), and the number of samples for
which each method is rated the best on average across all users
(#Win samples).

Score #Pref. users #Win samples

LayerD 3.74 15 (71.4%) 27 (54.0%)
YOLO base 3.52 2 (9.5%) 15 (30.0%)
VLM base 3.31 4 (19.0%) 8 (16.0%)

E. Influence of Matting and Inpainting Model
Choices

We vary the matting backbones (Swin-L/T [4], PVT-
M/S [6]) and replace the inpainting model with FLUX.1
Fill [dev] [2] and evaluate their influence. The larger mat-
ting models improve performance while using FLUX.1 Fill
[dev] shows significant degradation. Generative inpaint-
ing often introduces unwanted objects, which interfere with
subsequent decomposition steps. This highlights the need
for graphic design-specific inpainting as well as refinement.

0 1 2 3 4 5
Edits (Max.)

0.04

0.05

0.06

0.07

R
G

B
 L

1

0 1 2 3 4 5
Edits (Max.)

0.75

0.80

0.85
A
lp

ha
 s

of
t

Io
U

Swin-L Swin-T PVT-M PVT-T

(a) Results with different matting backbones, SwinTransformer [4] and
PVT [6] variants. The inpainting model is fixed to LaMa [5].

0 1 2 3 4 5
Edits (Max.)

0.05

0.08

0.10

0.12

0.15

RG
B

L1

0 1 2 3 4 5
Edits (Max.)

0.65

0.70

0.75

0.80

0.85

Al
ph

a
so

ft
Io

U

Swin-L + LaMa Swin-L + FLUX

(b) Results with different inpainting models, LaMa [5] and FLUX [3].

Figure F. Evaluation results of LayerD with different matting (a)
and inpainting model (b) choices.

https://www.microsoft.com/powerpoint

+ Change color + Remove text + Adjust photo brightness

+ Change color + Change layout

+ Add effect + Remove text + Zoom-out text backdrop

+ Change layout + Remove and copy objects

+ Add effect + Change layout

Figure A. Editing examples on Crello [7] test set. The leftmost images are the original images, and the remaining images are edited ones
based on the decomposed layers. We use LayerD to decompose the original images into layers, divide them into connected components,
and group text components using CRAFT [1]. Then, we perform various layer-level edits, from simple layout changes to applying built-in
image effects, on PowerPoint.

Application

Application

Input Layer 1 Layer 2 Layer 3

Figure B. Additional qualitative results of our method on Crello [7] test set. The leftmost column shows the input image, and the remaining
columns show the decomposed layers from back to front.

Application

Application

Input Layer 1 Layer 2 Layer 4Layer 3

Figure C. Additional qualitative results of our method on Crello [7] test set. The leftmost column shows the input image, and the remaining
columns show the decomposed layers from back to front.

Input Layer 1 Layer 2 Layer 3

Figure D. Failure samples for too small objects on Crello [7] test set. The leftmost column shows the input image, and the remaining
columns show the decomposed layers from back to front.

Input Layer 1 Layer 2 Layer 3

Figure E. Failure samples due to the ambiguity of the layer granularity on Crello [7] test set. The leftmost column shows the input image,
and the remaining columns show the decomposed layers from back to front.

F. Detail of Decomposition Metrics

F.1. Dynamic Time Warping
We implement the Dynamic Time Warping (DTW) as
shown in Algorithm 1. Given decomposition results Ŷ =
(l̂k)

K
k=0 and ground truth Y = (lq)

Q
q=0, the output pairs

must include (0, 0) and (K,Q) as the start point and end
point with a step size of 1, and every layer must be included
in at least one pair. An average distance is then computed
over all pairs as the final output.

Algorithm 1 Dynamic Time Warping (DTW)

Inputs:
- ls: decomposition results of length K (from bottom

to top)
- gts: ground truth of length Q (from bottom to top)
- dist: distance func bounded in [0, 1]
#
Outputs:
- pairs: a list of (l_idx, gt_idx)
- D: distance

Step 1: Compute Cost Matrix
C = np.zeros((len(ls), len(gts)))
for i in range(len(ls)):

for j in range(len(gts)):
C[i,j] = dist(ls[i], ls[j])

Step 2: Compute Accumulated Cost Matrix
D = np.zeros((len(ls), len(gts)))
for i in range(1, len(ls)):

D[i, 0] = D[i-1,0] + C[i,0]
for j in range(1, len(gts)):

D[0, j] = D[0,j-1] + C[0,j]
for i in range(1, len(ls)):

for j in range(1, len(gts)):
D[i,j] = C[i, j] + min(D[i-1,j], D[i,j-1], D[i

-1,j-1])

Step 3: Backtrace to Find Optimal Alignment
i, j = len(ls)-1, len(gts)-1
pairs = [(i,j)]
while True:

if i==0 and j==0:
break

elif i==0:
pairs.append((i,j-1))
j-=1

elif j==0:
pairs.append((i-1,j))
i -= 1

elif D[i-1,j-1]<=D[i-1,j] and D[i-1,j-1]<=D[i,j-1]:
pairs.append((i-1,j-1))
i -= 1
j -= 1

elif D[i-1,j]<=D[i-1,j-1] and D[i-1,j]<=D[i,j-1]:
pairs.append((i-1,j))
i -= 1

else:
pairs.append((i,j-1))
j -= 1

D = sum([Dist(ls[i], gts[j]) for i,j in pairs])/len(
pairs)

return pairs, D

F.2. Edits algorithm
We employ an iterative refinement process with DTW to
quantify the number of edits required to align the decompo-
sition results with the given ground truth. At each iteration,
we apply the edit (Merge) that yields the highest gain until

either the maximum number of edits is reached or the num-
ber of layers is reduced to two, as shown in Algorithms 2
and 3. To efficiently approximate the optimal edit, we adopt
a greedy search strategy: at iteration i, we focus on changes
in distances between consecutive layers—specifically, lay-
ers i, i + 1, and i + 2 (if present)—rather than evaluating
all layers globally. The optimal edit is then selected from
among all candidates at each iteration, ensuring a balance
between computational efficiency and alignment accuracy.
Although Algorithms 2 and 3 describe only the merging of
predicted layers for simplicity, we apply the same merging
procedure to both the predicted and ground truth layers to
address both under- and over-decomposition. See Figs. G
and H for visualization of the alignment and merging pro-
cess.

Algorithm 2 MergeEdit

Inputs:
- ls: decomposition results of length K (bottom to

top)
- gts: ground truth of length Q (bottom to top)
- emax: maximum number of edits
- dist: distance function bounded in [0, 1]
#
Outputs:
- pairs: a list of (l_idx, gt_idx)
- D: distance
- e: number of edits

e = 0
while e < emax and len(ls) > 2:

pairs, _ = dtw(ls, gts)
merged_ids, gains = find_gains(ls, gts,

pairs, dist)
if len(gains) > 0:

best_id = merged_ids[argmin(gains)]
merged = merge(ls[best_id], ls[best_id+1])
ls[best_id] = merged
ls.pop(best_id+1)

else:
break

e += 1
return dtw(ls, gts), e

def merge(x, y): # Merge func by OpenCV
return Image.alpha_composite(x, y)

Algorithm 3 FindGains

Inputs:
- ls: decomposition results of length K (bottom to

top)
- gts: ground truth of length Q (bottom to top)
- pairs: list of (l_idx, gt_idx) obtained from DTW
- dist: distance function bounded in [0, 1]
#
Outputs:
- merged_ids: list of indices where merging occurs
- gains: list of corresponding distance reductions

merged_ids, gains = [], []
for i in range(len(ls)-1):

Step 1: Compute merged layer candidates
subls = [merge(ls[i], ls[i+1])] + ([ls[i+2]] if i+2

< len(ls) else [])

Step 2: Gather corresponding ground truth layers
subgts = [

[gts[p[1]] for p in pairs if p[0] == i],
[gts[p[1]] for p in pairs if p[0] == i+1]

]

Step 3: Compute current distance sum
curD = sum([dist(ls[i], subgt) for subgt in subgts

[0]]) + \
sum([dist(ls[i+1], subgt) for subgt in subgts

[1]])

Step 4: Compute distance sum after merging
Ds = []
for j in range(len(subls)):

for k in range(len(subgts)):
Ds.append(sum([dist(subls[j], subgt) for

subgt in subgts[k]]))
Ds = [d + Ds[0] for d in Ds[1:]]
minD = min(Ds)

Step 5: Check if merging reduces distance
if minD < curD:

merged_ids.append(i)
gains.append(minD - curDs)

return merged_ids, gains

def merge(x, y): # Merge func by OpenCV
return Image.alpha_composite(x, y)

G. Loss functions
We use binary cross-entropy loss LBCE, IoU loss LIoU, and
SSIM loss LSSIM in our training as BiRefNet [8]. Defini-
tions of each loss function are as follows.

LBCE(l̂
A, lA) =

1

|Ω|
∑
i,j∈Ω

−lA
i,j log l̂

A
i,j

− (1− lA
i,j) log(1− l̂A

i,j), (1)

LIoU(l̂
A, lA) = 1−

∑
i,j∈Ω

lA
i,j l̂

A
i,j∑

m,n∈Ω

lA
m,n + l̂A

m,n − lA
m,nl̂

A
m,n

, (2)

LSSIM(l̂
A
, l

A
) = 1 −

1

|P|
∑
p∈P

(2µlA
p
µl̂A

p
+ C1)(2σlA

p l̂A
p
+ C2)

(µ2
lA
p
+ µ2

l̂A
p
+ C1)(σ2

lA
p
+ σ2

l̂A
p
+ C2)

, (3)

where Ω denotes the set of spatial indices, and P repre-
sents the set of overlapping patches. The local mean µl̂A

p

and variance σ2
l̂A
p

, as well as the local mean µlA
p

and vari-

ance σ2
lA
p

of ground truth, are computed within correspond-
ing patches indexed by p ∈ P . The covariance σlA

p l̂
A
p

quanti-
fies structural similarity between the prediction and ground
truth patches. C1 and C2 are constants and the setting de-
tails follow [8], except that both the predicted and ground-
truth alpha maps l̂A and lA, are not binarized due to shading
and smooth transitions commonly used in graphic design.

Merge

RGB L1: 0.077, Alpha soft IoU: 0.719

RGB L1: 0.092, Alpha soft IoU: 0.845

Merge

RGB L1: 0.028, Alpha soft IoU: 0.922

Input

G
T

Pr
ed

G
T

Pr
ed

G
T

Pr
ed

Figure G. Visual example of the DTW-based layer alignment and editing process. Red lines connect matched layers between LayerD’s
prediction and the ground truth; their thickness represents the matching score (the inverse of the distance), i.e., the thicker the line, the
higher the score. Green boxes indicate the layers that are merged during the editing process. All layers are sorted from back to front, with
the backmost layer on the left and the frontmost on the right. Although the decomposition result appears useful for editing the input image,
its quality is underestimated due to a mismatch in granularity with the ground truth. Layer merging resolves this mismatch, enabling a
more faithful evaluation of the decomposition quality.

Merge

RGB L1: 0.019, Alpha soft IoU: 0.805

RGB L1: 0.015, Alpha soft IoU: 0.947

Input

G
T

Pr
ed

G
T

Pr
ed

Figure H. Visual example of the DTW-based layer alignment and editing process. Red lines connect matched layers between LayerD’s
prediction and the ground truth; their thickness represents the matching score (the inverse of the distance), i.e., the thicker the line, the
higher the score. Green boxes indicate the layers that are merged during the editing process. All layers are sorted from back to front, with
the backmost layer on the left and the frontmost on the right. LayerD overdecomposes the white background, but in practical scenarios, it
is easy to merge these into a single layer. Our evaluation treats such cases as requiring a single edit operation, reflecting the actual editing
workload for users.

References
[1] Youngmin Baek, Bado Lee, Dongyoon Han, Sangdoo Yun,

and Hwalsuk Lee. Character region awareness for text detec-
tion. In CVPR, pages 9365–9374, 2019. 1, 2

[2] Black Forest Labs. FLUX.1 fill [dev]. https://
huggingface.co/black-forest-labs/FLUX.1-
Fill-dev, 2024. Last accessed 7 March, 2025. 1

[3] Black Forest Labs. FLUX.1 [dev]. https : / /
huggingface.co/black-forest-labs/FLUX.1-
dev, 2024. Last accessed 7 March, 2025. 1

[4] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer: Hi-
erarchical vision transformer using shifted windows. In ICCV,
2021. 1

[5] Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin,
Anastasia Remizova, Arsenii Ashukha, Aleksei Silvestrov,
Naejin Kong, Harshith Goka, Kiwoong Park, and Victor Lem-
pitsky. Resolution-robust large mask inpainting with fourier
convolutions. In WACV, 2022. 1

[6] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. Pyra-
mid vision transformer: A versatile backbone for dense pre-
diction without convolutions. In ICCV, 2021. 1

[7] Kota Yamaguchi. CanvasVAE: Learning to generate vector
graphic documents. In ICCV, 2021. 1, 2, 3, 4, 5

[8] Peng Zheng, Dehong Gao, Deng-Ping Fan, Li Liu, Jorma
Laaksonen, Wanli Ouyang, and Nicu Sebe. Bilateral reference
for high-resolution dichotomous image segmentation. CAAI
Artificial Intelligence Research, 3, 2024. 7

https://huggingface.co/black-forest-labs/FLUX.1-Fill-dev
https://huggingface.co/black-forest-labs/FLUX.1-Fill-dev
https://huggingface.co/black-forest-labs/FLUX.1-Fill-dev
https://huggingface.co/black-forest-labs/FLUX.1-dev
https://huggingface.co/black-forest-labs/FLUX.1-dev
https://huggingface.co/black-forest-labs/FLUX.1-dev

	Editing Examples
	Additional Results
	Failure Cases
	User Study
	Influence of Matting and Inpainting Model Choices
	Detail of Decomposition Metrics
	Dynamic Time Warping
	Edits algorithm

	Loss functions

