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Supplementary Material

1. More experimental results
1.1. Videos and interactive results
The project website contains interactive results and video
results, which we encourage the reader to explore.

1.2. Comparison to video models
Video models have emerged as a powerful tool for novel
view systhesis. However, using them to reconstruct a 3D
asset from a generated video requires distillation [12], simi-
larly to CAT3D, which significantly increases the runtime
of such approaches when applied to 3D reconstruction.
Nonetheless, we evaluate the quality of novel views gener-
ated by one representative approach, MVSplat360 [2]. We
evaluate Bolt3D and MVSplat360 on 2-view and 4-view re-
construction on scenes from DL3DV at 512 × 512 resolu-
tion. We take care to input appropriately-sized renders to
MVSplat360’s diffusion model to match its training resolu-
tion, and crop images appropriately for evaluation. In Tab. 1
we observe that renders from Bolt3D’s 3D scenes are more
accurate than the novel views generated by MVSplat360.
In Fig. 1 we find that the conditioning often needed for
video models (e.g., ViewCrafter [22], MVSplat360, Re-
conX [12]) can be brittle, resulting in poor accuracy of gen-
erated views. In addition, video models are also slow (5.8
minutes for 56 frames) while Bolt3D reconstructs a 3D as-
set in 7 seconds and renders in real-time.

Method PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓

2-view MVSplat360 13.97 0.400 0.575 104.83
DL3DV Ours 17.75 0.550 0.392 64.53

4-view MVSplat360 15.42 0.422 0.507 76.91
DL3DV Ours 20.64 0.652 0.311 48.28

Table 1. MVSplat360’s video model renderer is less accurate and
more than 200× slower than Bolt3D for 2- and 4-view DL3DV.

Inputs Cond. (MVSplat) MVSplat360 Ours GT

Figure 1. MVSplat360 uses MVSplat for conditioning, which
works poorly when there is little or no input view overlap.

1.3. Ablations
Ablation—Geometry VAE. We observe in Tab. 2 that
training the encoder (rather than using a frozen, pre-trained
one) is important for high autoencoding precision, likely

Rel. ↓ δ1.01 ↑ ∆uv(px) ↓

Full model 0.99 73.0 2.56

- encoder training 1.63 58.9 3.79
- Lrec re-weighting 1.68 56.7 5.43
- Lgrad 1.16 69.8 2.96

Table 2. Geometry ablation. Removing encoder training or
geometry-specific losses leads to worse performance.

due to pointmaps being outside of the value range on which
the encoder was pre-trained. Removing the weighting on
distant points (Eq. (2)) or the gradient loss (Eq. 7 main pa-
per) reduces performance of our system.

Ablation—Gaussian Head. In Tab. 3 we illustrate that the
design choices in the Gaussian Head are important for high-
quality rendering. Using fewer (8, rather than 16) views
reduces scene coverage and thus incurs a bigger rendering
error. Cross attention is important because it allows mod-
ulating opacity in splatter images depending on visibility
from other views. Using constant opacity and scale pa-
rameters reduces rendering quality. Interestingly, allowing
the means to be modified by the Gaussian Head also drops
performance, suggesting that explicit geometry losses give
a stronger supervisory signal, consistent with comparisons
to Wonderland [10] in the main paper. Lastly, forcing the
Gaussians to lie on rays is advantageous for rendering qual-
ity.

Low-resolution comparisons Most methods evaluate per-
formance at lower resolution than our method can han-
dle, and sometimes train at a different resolution, making
apples-to-apples comparison challenging. We make the best
effort at comprehensive testing at different possible input
resolutions to present baseline methods in the most favor-
able chance. First, we verify that the best way to evaluate
baseline methods at high resolution is to feed in a high res-
olution image Tab. 4, rather than upscaling outputs from
lower-resolution input. This is the method we use for all
baseline methods in the main paper.

Next, we evaluate performance at a lower resolution,
closer to the training setup of baseline methods. In Tab. 5
we illustrate that at a lower 256×256 resolution, our model
still outperforms Depthsplat. Finally, we give Depthsplat
an advantage by evaluating its performance when receiving
wide field-of-view (fov) 256 × 448 images. In this setting,
the wider field-of-view provides more scene coverage by a
factor of ×1.75 and more cues for matching across differ-
ent views. Only in this setting do we find that Depthsplat
achieves similar performance to our method.



PSNR ↑ SSIM ↑ LPIPS ↓

Ours 24.72 0.831 0.209

Fewer views at inference 24.30 0.823 0.221
No cross-attention 23.80 0.804 0.239
No Gaussian Head 21.94 0.734 0.343
XYZ learnt from rendering 21.88 0.755 0.311
No ray-clipping 20.78 0.642 0.288

Table 3. Appearance ablation. All components of architecture,
training and inference are important for high-quality appearance.

Resolution input
to network PSNR ↑ SSIM ↑ LPIPS ↓

256 × 256 23.49 0.845 0.203
512 × 512 24.17 0.875 0.183

Table 4. Evaluating Depthsplat at high resolution. We verify
that the most advantageous setting for Depthsplat when evaluating
it on high 512× 512 resolution is to use a high-resolution input.

Method Input Res. PSNR ↑ SSIM ↑ LPIPS ↓

1-view
RE10K

Flash3D 256×256 17.70 0.616 0.393
Ours 256×256 21.62 0.804 0.202

3-view
RE10K

Depthsplat 256×256 24.69 0.873 0.126
Ours 256×256 27.39 0.916 0.103

2-view
DL3DV

Depthsplat 256×448 18.09 0.549 0.323

Depthsplat 256×256 16.16 0.467 0.388
Ours 256×256 18.01 0.556 0.320

4-view
DL3DV

Depthsplat 256×448 21.20 0.697 0.208

Depthsplat 256×256 19.64 0.633 0.254
Ours 256×256 21.16 0.695 0.231

6-view
DL3DV

Depthsplat 256×448 21.93 0.730 0.184

Depthsplat 256×256 20.64 0.680 0.225
Ours 256×256 22.18 0.733 0.206

Table 5. Low-resolution 256×256 comparisons. Our method
outperforms competitors at low resolution when receiving the
same input information. Only when DepthSplat [21] receives 1.75
times more input information than our method by ingesting wide-
fov images, does its performance become similar to ours.

2. Implementation details

2.1. XYZ normalization
Relativization. The supervising (pseudo-ground truth)
data used to train our diffusion model is reconstructed using
off-the-shelf 3D reconstruction algorithms (MASt3R) [9].
We transform this 3D reconstruction to the view-space of
the first camera, such that all point coordinates and all
cameras are relative to this coordinate frame: Π, xyz :=
ΠΠ−1

0 , xyzΠ−1
0 , where Π0 denotes the camera-to-world

rigid body transform of the first camera.

Scaling. We normalize the 3D scale of the reconstructed
scenes by applying a per-scene scaling factor α to the
camera poses and point coordinates: Π, xyz = αΠ, αxyz .
This scale factor is chosen such that the mean depth value
from the first camera is the same across every scene in our
dataset: ᾱxyz

0 [z] = 1.

Re-weighting Points in VAE Reconstruction Loss. In our
VAE reconstruction loss (Eq 5. main paper), we introduce a
re-weighting scheme for two reasons: 1) ground truth points
far from the scene center are more likely to be incorrect,
and 2) points with high magnitude would make up a large
proportion of an equal weighting loss.

For each scene, the point maps are defined in the coor-
dinate system of the “first camera.” When computing the
reconstruction loss, we first transform each point x ∈ P to
the local camera coordinate system:

xlocal = [R | T ]w2c x, (1)

where [R | T ]w2c is the world-to-camera transformation ma-
trix. Because scenes are scaled such that the mean depth to
the first camera is 1, we can think of [0, 0, 1]⊤ as the look-
at point or center of the scene, so d =

∥∥xlocal − [0, 0, 1]⊤
∥∥

is the distance of the point to the center of the scene of the
local camera. Thus, we compute:

Lrec =
2
√
w − 1

w
∥x̂local − xlocal, gt∥2 (2)

where w = max(1, d2) is the bounded squared distance
to the local scene center and 2

√
w−1
w is the Jacobian of the

contraction function defined in MipNerf-360 [1].

2.2. Architecture and training details.
Diffusion model. We use a U-Net with full 3D attention
on all feature maps up to 32 × 32, as in CAT3D [6]. Un-
like CAT3D, our diffusion model is trained to model the
joint distribution of latent appearance and geometry. To this
end, we increase the number of channels in the input and
output layers of CAT3D’s architecture by 8 to additionally
accept geometry latents. The input to our network thus has
8-dimensions for the geometry latents, 8-dimensions for the
image latent, 6-dimensions for the camera pose raymaps,
and a 1-dimensional mask indicating which views are given
as conditioning, yielding an input dimension of 64×64×23.
We train with the same optimization hyperparameters as [6],
except we additionally finetune on 16 input views with a
lower learning rate of 1e− 5.

Autoencoder. We use a pre-trained and frozen image au-
toencoder similar to that of Stable Diffusion [14]. The ge-
ometry encoder has the same architecture, except we in-
crease the channel dimension to additionally accept a 6-
dimensional camera pose representation. The decoder is a
transformer-based network. We patchify the 64 × 64 × 8
latent with patch size 2, thus using a token length 1024.
We use the ViT-B architecture hyperparameters: 12 layers
with channel size 768, with the fully-connected layer con-
sisting of 2 dense layers with GeLU activation function and
a hidden MLP dimension 3072. The linear projection head
projects each token to a 16× 16 patch. We optimize the pa-
rameters of the Autoencoder with the Adam [5] optimizer



using constant learning rate 1e − 4, batch size 512, Adam
parameters (β1, β2) = (0.0, 0.99). We first train for 3M it-
erations at 256× 256 resolution, followed by fine-tuning at
512× 512 for 250k iterations. We use loss weight parame-
ters λ1 = 3e− 9 and λ2 = 0.033.

Foreground masking for synthetic data. In synthetic
data, we apply loss Lrec only on foreground pixels and train
the model to additionally output a foreground alpha mask,
supervised with binary cross-entropy loss.

Gaussian head. We detail the Gaussian head architec-
ture in Fig. 2. The Gaussian Head receives as input
the 3-dimensional image, 3-dimensional pointmap, and 6-
dimensional raymap encoding the camera pose. Each view
is first passed through 3 residual convolutional blocks with
the Swish activation function [13] and channel size 128,
followed by 4 × 4 patchification to token dimension 128
and full cross attention. We use 3 transformer layers with
hidden dimension 128 and 8 heads, MLP dimension 512.
The tokens are then unpatchified to original resolution and
128 channel dimension. Following that, there are another 3
residual convolutional blocks, and a final, unactivated 3× 3
convolutional layer that outputs channel size 11 (3 for color,
3 for size, 4 for rotation and 1 for opacity). The outputs are
activated with an exponential function for scale and a sig-
moid function for opacity. To facilitate accurate scale pre-
diction, the size output by the network is then multiplied
by the z-distance of the gaussian from the camera. The
means of Gaussians are not predicted by the Gaussian head,
as they are already available from the VAE. The Gaussian
head is trained with 8 input views, leading to a sequence
length 131k. We manage this computational complexity
by using FlashAttention [3, 4] and rematerializing gradi-
ents on the dot product operation. For losses, we use L2
photometric loss with weight λ = 1 and LPIPS loss weight
λLPIPS = 0.05. We train with learning rate 1e − 4 and
batch size 8. When training the Gaussian Head, the Geom-
etry and Image autoencoders are frozen.

Gaussian head for viewer assets To enhance rendering
performance and reduce the memory footprint of assets for
the viewer on our project website, we add an L1 regularizer
term to encourage completely transparent Gaussians when
they are not necessary, similar to LongLRM [23]. Gaus-
sians with low opacity are then culled before saving the as-
set. To further reduce file sizes, the model data is quantized
in chunks of 256 gaussians (https://github.com/
playcanvas/splat-transform).

2.3. Inference.
Sampling details. We train our diffusion model [7] using
v-parameterization [15] with T=1000 timesteps. At infer-
ence time, we use DDIM [17] to speed up inference to 50
steps using the same noise schedule as CAT3D [6] except

with zero terminal SNR [11].

Camera path sampling. We use the same camera path
heuristics as CAT3D – sampling circular paths, forward-
facing paths and splines. We use much fewer views than
CAT3D (16 vs their 800), so we sample camera paths on
only one path, typically with the median radius and height
of cameras in the training set, without offsets or scaling [6].

3. Limitations, discussion and future work

Limitations. While our method can produce a wide range
of geometries, it still struggles on thin structures, especially
those that are fewer than 8 pixels wide (the spatial down-
sampling ratio of our geometry VAE). Our method also
struggles with scenes that have large amounts of transpar-
ent or highly non-lambertian surfaces, for which geometry
reconstruction in Structure-from-Motion frameworks is typ-
ically inaccurate.

Our model is also sensitive to the distribution of the tar-
get cameras, in particular the up-vector chosen to generate
the camera path as well as the scene scale. Perhaps these
could ameliorated in future work with better data augmen-
tation.

Discussion and future work. To the best of our knowl-
edge, Bolt3D is the first work to explore the architecture and
training recipe of a Geometry VAE, and there remain sev-
eral design choices to be explored. In particular, we chose
compress pointmaps over depth due to their resounding suc-
cess in multi-view reconstruction (Dust3r [19], Mast3r [9]),
but concurrent work shows that inferring depth can be com-
plimentary [8] or even advantageous [18]. We leave explo-
ration of these findings in context of 3D generation to future
works.

Next, despite making a significant step in feed-forward
3D generation, the quality of 3D generation, Bolt3D lacks
in quality compared to optimization-based methods such as
CAT3D. We hypothesize this is due to CAT3D generating
much more views (≈800, compared to our 16), resulting
in more complete scene coverage. Generating more views,
perhaps through an anchoring strategy [16], could improve
the quality of results, though it would result in a large num-
ber of 3D Gaussians.

Finally, Bolt3D generates exclusively static scenes. Per-
haps future work could combine multi-view video diffusion
models [20] with Bolt3D’s direct geometry generation to
generate dynamic 3D scenes in a feed-forward manner.

4. Experimental details

DL3DV scenes. We ran evaluation on the intersection of
our test set and the public test benchmark. The scenes used
for evaluation were:

https://github.com/playcanvas/splat-transform
https://github.com/playcanvas/splat-transform
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Figure 2. Our Gaussian head architecture consists of convolutional and transformer blocks, with patchification to manage the cross-
attention sequence length.

• 0569e83fdc248a51fc0ab082ce5e2baff15755
c53c207f545e6d02d91f01d166,

• 073f5a9b983ced6fb28b23051260558b165f32
8a16b2d33fe20585b7ee4ad561,

• 183dd248f6a86e07c5adf9de8ee2d0abe45b12
16331c03678e89634c2e9b1c7f,

• 1ba74c22670ad047981441581d00f26f4a148d
1010bcac7468c615adf5fa4d5d,

• 389a460ca1995e0658e85fe8e6b520b4e88b37
0cd6710dfe728b1564bba31aee,

• 493816813d2d6d248eb3c2b0b77b63e5423526
6e9a06e270fd0d282f13960493,

• 50c46cf8b8b22c8d2ffdef8964b05ddbceaef3
12c9a9ff331d1ecebfd223f72a,

• 4ae797d07b6d1644c9db6919c8cc8c0d28d72b
e45108ac7a3abf8dc21b599d83,

• 565553aa894be621e8b4773cac288e60ad0c2c
f7edb621be62b348c9a0f78380,

• 599ca3e04cae3ec83affc426af7d0d7ab36eb9
1cd8e539edbc13070a4d455792,

• 5c8dafad7d782c76ffad8c14e9e1244ce2b83a
a12324c54a3cc10176964acf04,

• 63798f5c6fbfcb4eb686268248b8ecbc8d87d9
20b2bcce967eeaedfd3b3b6d82,

• 946f49be73928469000baa5ca04d2573137c5e
e6a66362bcf8d130354dca8924,

• 9e9a89ae6fed06d6e2f4749b4b0059f35ca97f
848cedc4a14345999e746f7884,

• cd9c981eeb4a9091547af19181b382698e9d9e
ee0a838c7c9783a8a268af6aee,

• d4fbeba0168af8fddb2fc695881787aedcd62f
477c7dcec9ebca7b8594bbd95b.
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