
Collaborative Instance Object Navigation:
Leveraging Uncertainty-Awareness to Minimize Human-Agent Dialogues

Supplementary Material

In this supplementary material, we first provide additional
details regarding the CoIN-Bench dataset (Sec. A), including
an overview of the GOAT-Bench dataset on which CoIN-
Bench is based, as well as statistics and examples of target
instances within CoIN-Bench. Additionally, in Sec. B, we
provide a visualization of the evaluation setup, clarifying
the role of the user responses in our evaluation, whether
from real human or simulation. Next, we elaborate on the
implementation details for baseline comparisons in Sec. C,
and present a computational analysis of AIUTA in Sec. D.
Further details on the real human experiments are provided in
Sec. E. Then, in Sec. F we investigate the low performance
of the original VLFM, and in Sec. G, we provide a UMAP
visualization of the questions generated by the agent. Next,
in Sec. H, we detail the evaluation conducted on IDKVQA
including the dataset creation, evaluation metric, and state-
of-the-art baselines used for comparison. Finally, we include
all the prompts in Sec. I and the full algorithm of AIUTA in
Sec. J.

For a demonstration of AIUTA in action, engaging with
a real human through natural language dialogues to col-
laboratively localize a target instance, please refer to the
accompanying video (aiuta demo.mp4) provided in the sup-
plementary material.

A. Additional details of CoIN-Bench

A.1. CoIN-Bench

Instance examples. The CoIN-Bench benchmark poses a
significant challenge, since multiple distractor objects are
present among each target. To illustrate this, Fig. 1 provides
examples where the target instance is highlighted with red
borders, while distractors in the same scene are marked with
blue borders. As demonstrated, agent-user collaboration is
crucial to gather the necessary details for uniquely identify-
ing the target instance among other visually similar objects
of the same category, such as the armchair or the plant.
Dataset statistics. We provide additional statistics for the
CoIN-Bench dataset. In Fig. 2 we show the shortest path
statistics for the CoIN-Bench dataset. In particular, the eu-
clidean and geodesic distance for all the split, as well as
the number of distractors. Next, Fig. 3 illustrates the distri-
bution of instance categories across different splits. These
splits are ordered by dataset size, from the largest at the
top (Val Seen) to the smallest at the bottom (Val Seen
Synonyms). The number of distinct categories decreases
as the dataset size reduces. The Val Seen split, being

the largest, also contains the highest number of distinct cat-
egories, with “cabinet”, “bed”, and “table” being the top
3 common categories. Val Seen Synonyms, being the
smallest, only contains 3 categories.

A.2. GOAT-Bench
Dataset. GOAT-Bench provides agents with a sequence of
targets specified either by category name c (using episodes
from [64]), language description d, or image in an open
vocabulary fashion, using the HM3DSem [43] scene datasets
and Habitat simulator [48]. Natural-language descriptions d
are created with an automatic pipeline by leveraging ground-
truth semantic and spatial information from simulator [48]
along with capabilities of VLMs and LLMs. Specifically,
for each object-goal instance, a viewpoint image is sampled
to maximize frame coverage. From this sampled image, the
names and 2D bounding box coordinates of visible objects
are extracted. Then, spatial information is extracted with
the BLIP-2 [22] model, while ChatGPT-3.5 is prompted to
output the final language description.
Splits. GOAT-Bench baselines are trained on Train split,
and evaluated on validations splits. Notably, the evaluation
splits are divided into Val Seen (i.e., object categories
seen during training), Val Seen Synonyms (i.e., object
categories that are synonyms to those seen during training)
and Val Unseen (i.e., novel object categories).

B. Evaluation Setup
In Fig. 4, we show the two evaluation setups, highlighting
their differences between the human user and the simulated
user-agent interactions. Fig. 4 (Left) shows how a human
user answers the agent’s queries based on their knowledge
of the target instance. However, relying on human responses
for large-scale evaluations is impractical due to variability,
scalability constraints and large cost. To address this, we
introduce a simulated user-agent interaction setup as in Fig. 4
(Right). The user responses are simulated via a VLM with
access to the high-resolution target instance image, which
is never available to the agent. With the visual coverage of
the target instance, the simulated user responses can support
the diverse open-ended, template-free questions from the
agent, about any attribute of the target instance. This is
more desired than previous work [9] whose simulation setup
leverages an LLM with access to the instance description,
particularly when the instance description misses critical
fine details that the agent deems important to know. For
instance, in the case of the picture in Fig. 1 of the main paper,



Target: plant

Target: bed

Target: armchair

Target: picture

Figure 1. CoIN-Bench can be very challenging when only given the instance category to the agent. We highlight the target instance with red
borders, while the distractor instances that exist in the same scene are marked with blue borders.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Euclidean Distance to Goal

0

10

20

30

40

50

60

70

Va
lid

at
io

n 
sp

lit
s

7.
57

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Geodesic Distance to Goal

9.
43

Figure 2. Distribution of the path length to the goal, both in Euclidean and Geodesic term.



C
ou

nt

C
ou

nt
C

ou
nt

C
ou

nt

C
ou

nt
C

ou
nt

Split: Val Seen

Split: Val Unseen

Split: Val Seen Synonyms

Figure 3. We show the distribution of categories, categorized for each evaluation split.

Human User 
Simulated

Target image to be 
found. Visible only 

to the VLM-
simulated user

Real User Scenario User-simulated Scenario

Gives Instruction I

“Find the picture”

Gives Instruction I

“Find the picture”

Response Response 

Response 

Question Question

Question

1

Observation Ot Observation Ot

Agent-user Interaction 
with UncerTainty 

Awareness

Agent-user Interaction 
with UncerTainty 

Awareness

VLM

Figure 4. CoIN-Bench evaluation setup. (Left) Real human re-
sponding to the agent’s question. (Right) Simulated user-agent
interactions, where the user responses are provided by a VLM with
access to a high-resolution target instance image for scalable and
reproducible experimentation.

the instance description may not mention “the person is
shirtless”, but this detail is critical for the agent to eventually
disambiguate the target instance from distractors.

C. Baselines

In this section, we provide a description of the different
baselines for Instance Navigation and Object Navigation
used throughout the paper: VLFM (Sec. C.1), Monolithic
(Sec. C.2), PSL (Sec. C.3), and OVON (Sec. C.4).

C.1. VLFM

VLFM [63] is a zero-shot state-of-the-art object-goal navi-
gation policy that does not require model training, pre-built
maps, or prior knowledge about the environment. The core
of the approach involves two maps: a frontier map (see in
Fig. 5 (a)) and a value map (see Fig. 5 (b)).
Frontier map. The frontier map is a top-down 2D map built
from depth and odometry information. The explored area
within the map is updated based on the robot’s location, head-
ing, and obstacles by reconstructing the environment into a
point cloud with the depth images, and then projecting them
onto a 2D grid. The role of the frontier map is to identify
each boundary separating the explored and unexplored areas,
thus identifying the frontiers (see the blue dots in Fig. 5 (a)).
Value map. The value map is a 2D map similar to the fron-
tier map. For each point within the explored area, a value is



(a) (b)

Figure 5. (a) Frontier map and (b) value map constructed by
VLFM [63]. The blue dots in (a) (as well as the red dots in (b)) are
the identified frontiers.

assigned by quantifying its relevance in locating the target ob-
ject (see Fig. 5 (b)). At each timestep, frontiers are extracted
from the frontier map, and the frontier with the highest value
on the value map is selected as the next goal for exploration.
To efficiently guide the navigation, VLFM projects the co-
sine similarity between the current visual observation and a
textual prompt (e.g., “Find the picture”) onto the value map.
This similarity is computed using the BLIP-2 model [22],
which achieves state-of-the-art performance in image-to-text
retrieval. To verify whether a target instance is present in the
current observation, VLFM employs Grounding-DINO [27],
an open-vocabulary object detector. Once a candidate target
is detected, Mobile-SAM [67] refines the detection by seg-
menting the object’s contour within the bounding box. The
segmented contour is paired with depth information to de-
termine the closest point on the object relative to the agent’s
position. This point serves as a waypoint for the agent to
navigate toward the object.

At each timestep, the action at is selected using a Point-
Goal navigation (PointNav) policy [2], which can navigate
to either a frontier or a waypoint, depending on the context.

C.2. Monolithic
The Monolithic (SenseAct-NN Monolithic Policy) is a sin-
gle, end-to-end reinforcement learning (RL) policy designed
for multimodal tasks, leveraging implicit memory and goal
encoding proposed in [19]. RGB observations are encoded
using a frozen CLIP [42] ResNet50 encoder. Additionally,
the agent integrates GPS and compass inputs, representing lo-
cation (∆x,∆y,∆z) and orientation (∆θ). These inputs are
embedded into 32-dimensional vectors using a encoder with
fully connected layers. To model multimodal inputs, a 1024-
dimensional goal embedding is derived using a frozen CLIP
image or CLIP text encoder, depending on the subtask modal-
ity (object, image, or language). All input features—image,
location, orientation, and goal embedding—are concatenated
into an observation embedding, which is processed through
a two-layer, 512-dimensional GRU. At each timestep, the
GRU predicts a distribution over a set of actions based on
the current observation and the hidden state. The policy is
trained using 4×A40 GPUs for approximately 500 million
steps.

C.3. PSL
PSL [52] is a zero-shot policy for instance navigation, which
is pre-trained on the ImageNav task and transferred to
achieve object goal navigation without using object annota-
tions for training.

Built on top of ZSON [31], observations are processed by
a learned ResNet50 encoder and a frozen CLIP encoder ob-
taining, respectively, observation embeddings and semantic-
level embeddings. To encode the goal modality, an additional
frozen CLIP encoder is used, obtaining goal embedding. The
goal and the semantic-level embeddings are additionally pro-
cessed by a semantic perception module, which reduces
dimension condensing critical information, emphasizing the
reasoning of the semantics differences in the goal and ob-
servation. Based on condensed embeddings and observation
embeddings, the authors trained a navigation policy using
reinforcement learning. Specifically, the PSL agent is trained
for 1G steps following ZSON [31], on 16 Nvidia RTX-3090
GPUs.

C.4. OVON
OVON [64] is a transformer-based policy designed for the
open-vocabulary object navigation task. At each timestep
t, it constructs a 1568-dimensional latent observation ot of
the current navigation state by concatenating the encodings
of the current image It, object description c, and previous
action at−1, using two SigLIP encoders [66] and an action
embedding layer. This latent observation is then passed
to a 4-layer decoder-only transformer [59], which, along
with the previous 100 observations, outputs a feature vector.
This vector is then used to produce a categorical distribution
over the action space via a simple linear layer. The policy
is trained on their proposed HM3D-OVON dataset using
various methods, such as RL and BC, for 150M to 300M
steps, across 16 environments on 8× TITAN Xp, resulting in
a total of 128 environments. Note that the categories seen in
training in HM3D-OVON overlap with that of GOAT-Bench.

D. Computational analysis

In the following, we report the average inference time of
AIUTA over 20 episodes, using an NVIDIA 4090 GPU, fol-
lowing the steps outlined in the algorithm in Sec. J.2: Step
1, Detailed Detection Description: 11.3s; Step 2, Perception
Uncertainty Estimation: 8.29s; Step 3 + Interaction Trigger:
6.13s. We would like to emphasize that our code was not
optimized for speed, as it is out of scope of our study- we
did not apply model compilation (e.g., torch.compile)
and quantization, leaving room for further efficiency im-
provements. Moreover, in AIUTA, we identify the primary
bottleneck is the LLM call. As discussed in the Conclusion
(Sec. 7) and in [8], reducing model dimensionality while
maintaining similar reasoning performance is a necessity



and a promising direction for future work. Additionally, our
inference time is in line with other works [8]. Finally, the
emerging field of Language Processing Units (LPUs) offers
potential solutions, promising near-instant inference, high
affordability, and energy efficiency at scale [14].

E. Evaluation with real human
To demonstrate the reliability and reproducibility of our
simulated setup, we run a human study comparing the per-
formance of AIUTA when user responses are provided
by: (i) real human and (ii) simulations (Fig. 4). A total
of 20 volunteers participated in the study (12 males and 8
females), with ages ranging from 20 to 40 years. All partici-
pants have backgrounds in electronic engineering, computer
science, or other relevant fields, minimizing expertise bar-
riers to conducting the experiments. At the start of each
episode, participants are given an image depicting the final
target instance, which remains accessible throughout the ex-
periment. Again, note that this image is never seen by the
agent. This setup simulates a real-world scenario where a
human has a reference image in mind, enabling them to an-
swer questions correctly. The human user then initiates the
navigation by sending the initial instruction to the agent (us-
ing the fixed template “Find the <category>”) via
a chat-like User Interface (UI) that we have developed for
the evaluation (as demonstrated in the supplementary video,
aiuta demo.mp4). Next, the human user is encouraged to
respond to the questions posed by AIUTA in natural lan-
guage and to truthfully reflect the facts about the target in-
stance. For this evaluation, we have selected 40 episodes
across CoIN-Bench dataset, randomly distributed among
participants, with each conducting two evaluations. When
compared with the simulated setting, we found no statistical
differences in terms of results, showing that our simulated-
based evaluation is reliable and reproducible.

F. VLFM results
In this section, we investigate the low SR results of VLFM
in Tab. 2 of the main paper. To better understand this be-
havior, we introduce an additional metric, Distractor
Success, which mirrors the success rate but considers an
episode successful if the agent stops at a distractor object
instead of the target. As we can see in Tab. 6, VLFM success-
fully locates the correct category instance (Distractor
Success) but struggles to discern its attributes and dif-
ferentiate between instances (low SR). Furthermore, this
analysis highlights that the presence of sufficient distractors
is well realized with our dataset construction procedure.

G. UMAP visualization
To illustrate the diversity of questions to the user generated
by AIUTA, we collect 414 question samples made by the

Statistics Val Seen Val Seen Synonyms Val Unseen

SR 0.36 0.00 0.00

Distractor Success 3.37 0.84 4.58

Table 6. SR and Distractor Success comparison.

What type of 
pattern is on the 
upholstery of the 

sofa chair?

What type of leaves does 
the target plant have?

What is the shape of 
the target table, and are 

there any distinctive 
features?

What type of 
material is used for 
the handle of the 

target kitchen 
cabinet?

What are the 
key features 

of the mirror?

What is the color of 
the wall surrounding 

the radiator?

Does the 
cabinet in the 
scene have a 
glass door?

What type of 
fabric is used for 
the headboard of 
the target bed?

Is the couch positioned 
next to a fireplace?

Are there any 
lighting fixtures 
installed above 

the table?

Figure 6. AIUTA generates questions covering a wide range of
attributes, such as color, material, style, and spatial arrangement.

agent, compute embedding using Sentece-Bert [46] and vi-
sualize them using UMAP [33] for dimensionality reduction.
The results, shown in Fig. 6, demonstrate that AIUTA gener-
ates questions covering a wide range of attributes, such as
color, material, style, and spatial arrangement.

H. IDKVQA dataset
H.1. Dataset
An essential feature of the Self-Questioner is its ability to
generate self-questions aimed at extracting additional at-
tributes from the observation Ot and assessing the uncer-
tainty of the VLM. However, there exists no dataset in the
such context for us to understand if how reliable a technique
is for the VLM uncertainty estimation.

For this purpose, we introduce IDKVQA, a dataset specif-
ically designed and annotated for visual question answering
using the agent’s observations during navigation, where the
answer includes not only Yes and No, but also I don’t
know. Specifically, we sample 102 images from the training
split of GOAT-Bench. Then, for each image, we leverage the
Self-Questioner pipeline to generate a set of questions. Each
question is annotated by three annotators, that can pick one
answer from the set {Yes, No,I don’t know}. Fig. 7
illustrates sample images and their questions generated by
the Self-Questioner module.

H.2. VLM uncertainty estimation on IDKVQA.
In this section, we present a detailed analysis of VLM uncer-
tainty estimation on IDKVQA, focusing on the evaluation
metric and baseline methods.
Metric. We evaluate the performance using the Effective
Reliability metric Φc proposed in [60]. This metric captures



Q1: Is the couch a three-seater sofa?



Q2: Is the couch made of leather?



Q3: Is the rug in front of the couch a 
solid color?

Q1: Is the blue throw pillow the only 
colored pillow on the couch?



Q2: Is the blue blanket or throw 
draped over the back of the sofa?



Q3: Is the couch a two-seater sofa?

Q1: Is the fireplace framed by a 
wooden mantel?



Q2: Are there objects on the mantel?



Q3: Is the fireplace currently in use?

Q1: Does the cabinet have a rich, 
dark wood finish?



Q2: Does the cabinet have multiple 
drawers and a cabinet door?



Q3: Is there a painting hanging on the 
wall above the cabinet?

Figure 7. Examples from IDKVQA, showing images and the ques-
tions generated by the LLM.

the trade-off between risk and coverage in a VQA model by
assigning a reward to questions that are answered correctly,
a penalty c to questions answered incorrectly, and a zero
reward to the model abstaining. Formally:

Φc(x) =


Acc(x), g(x) = 1 and Acc(x) > 0

−c g(x) = 1 and Acc(x) = 0

0, g(x) = 0

Here, x = (i, q) ∈ X is the input pair where i is the
image and q is the question. The function g(x) is equal to 1
if the model is answering and 0 if it abstains. The parameter
c denotes the cost for an incorrect answer, and the VQA
accuracy Acc is:

Acc(f(x, y)) = min
(

# annotations that match f(x)

3
, 1

)
where the function f : X → V output a response r ∈ R for
each input pair x.
Baselines. We evaluate our proposed Normalized Entropy
against three baseline methods:

(i) MaxProb, which selects the response r with the high-
est predicted probability from the VLM, given image i and
question q. Formally, r = VLM(i, q). It does not incorpo-
rate uncertainty estimation.

(ii) LP [70], a recently proposed Logistic Regression
model trained as a linear probe on the logits distribution of
the first generated token. The model is trained on the An-
swerable/Unanswerable classification task using the VizWiz
VQA dataset [15], which includes 23, 954 images for train-
ing. When applied to IDKVQA, the logistic regression
model first predicts whether the question q is Answerable or
Unanswerable. If the question is deemed answerable, the
response r with the highest probability is selected among
{Yes, No}; otherwise, the response I don’t know is
returned.

(iii) Energy score, an energy-based framework for out-
of-distribution (OOD) detection [29]. Following the imple-
mentation in [29], an energy score is computed to identify
whether the given question-image pair is OOD. If the pair
is classified as OOD, the response I don’t know is re-
turned; otherwise, the response with the highest probability
is selected among {Yes, No}.

Finally, for our proposed Normalized Entropy estima-
tion, we link the abstention function g(x) (i.e., determining
whether the model abstains from answering) to Eq. 3 in
the main paper. Specifically, g(x) = 1 if the Normalized
Entropy classifies the model as certain, and g(x) = 0 oth-
erwise. Then, if the model is deemed certain, we return the
most probable answer {Yes, No}; otherwise, the response
I don’t know is selected.

H.3. Sensitivity analysis of the threshold τ

This section provides additional details about how small
variations of the threshold parameter τ affect both our Nor-
malized Entropy technique (Eq. 3) and the Energy Score [29],
with respect to the target metric Φc=1.

To conduct this analysis, we perform an ablation study
on datasets of varying sizes, obtained by randomly sub-
sampling CoIN-Bench. Specifically, we create five sets con-
taining 50% of the question-answer pairs from CoIN-Bench,
five sets comprising 70% of the question-answer pairs, and
also use the full dataset (100%) for a total of 11 datasets.

For each dataset, we identify the optimal threshold τ∗ for
each method through an exhaustive search over predefined
ranges, resulting in 22 optimal thresholds (11 per method)

Around each τ∗, we define a neighborhood τ comprising
30 new thresholds τ sampled symmetrically around it. Our
goal is to analyze how Φc=1 changes across these neighbor-
hoods: if the values are spread out, it means that the method
is very sensitive to small changes of τ near the optimal value,
whereas if they are more tightly distributed it means that it
is more robust.

Therefore, for each method and related neighborhood τ ,



we compute 30 Φc values, one for each τ ∈ τ , and normalize
them to the range[0, 1] by dividing each value by the best
Φc=1 found in τ . We do so to measure only the distribution
of the Φc=1 values, not their absolute values, and to help
the comparison across datasets of the same size (otherwise,
due to chance, they could have distributions of different
values). Finally, we aggregate all these normalized Φc=1

scores across dataset size, resulting in Fig.3 (main paper).
From the figure, we can see that our technique has smaller

interquartile ranges and tighter distributions of Φc=1, while
the Energy Score [29] exhibits larger tails, indicating more
variance. Moreover, our method shows distributions more
biased toward higher values (which would indicate smaller
degradation w.r.t. the best Φc=1) than those of the Energy
Score, and this gap increases as the dataset size decreases.
This shows that our technique is generally more robust, es-
pecially in data-scarce situations, and less sensitive to small
variations in τ .

I. Prompts
I.1. Pinit - Initial Description

1 P_init = """Describe the {target_object} in the
provided image."""

I.2. Pdetails - Gather Additional Information

1 P_details = """You are an intelligent embodied
agent equipped with an RGB sensor, an object
detector, and a Visual Question Answering (
VQA) model.

2 Your task is to explore an indoor environment to
find a specific target {target_object}.

3 The detector has identified a {target_object}.
The VQA model has provided the following
description of the scene:

4

5 <START_OF_DESCRIPTION>
6 {distractor_object_description}
7 <END_OF_DESCRIPTION>
8

9 Based on your past interactions with the user,
you know the following facts about the target
picture:

10 <START_TARGET_PICTURE_FACTS>
11 {facts_about_the_target_picture}
12 <END_TARGET_PICTURE_FACTS>
13

14 Your task is to:
15 - ask more question to the VQA model on the

detected {target_object} to maximize
information gain.

16

17 Ensure your output follows the following format:
18

19 YAML_START # must be present to get the
information back

20 attributes_of_the_image:
21 <attribute name>: "<attribute value>" #

summarize all the known attributes from the
description, enclosed in " "

22 questions:
23 <question_number>: "<question content>"
24 YAML_END # must be present to get the information

back
25

26 Provide your reasoning step-by-step, after the
YAML_END tag."""

I.3. Pcheck - Check detection with LVML

1 P_check = """Does the image contain a {
target_object}? Answer with Yes, No or ?=I
don’t know."""

I.4. Pselfquestion - Extract attributes and generate
Self-Questions

1 P_ATTRIBUTES_AND_SELF_QUESTIONS = """
2 You are an intelligent embodied agent equipped

with an RGB sensor, an object detector, and a
Visual Question Answering (VQA) model. Your
task is to explore an indoor environment to
find a specific target {target_object}.

3 The detector has identified a {target_object}.
The VQA model has provided the following
description of the scene:

4

5 <START_OF_DESCRIPTION>
6 {distractor_object_description}
7 <END_OF_DESCRIPTION>
8

9 Based on your past interactions with the user,
you know the following facts about the target
picture: <START_TARGET_PICTURE_FACTS> {
facts_about_the_target_picture} <
END_TARGET_PICTURE_FACTS>

10

11 Assume that the detected image description
contains hallucinations. Your goal is to
verify every attribute of the detected {
target_object} description through questions.
Formally:

12 - Detect possible hallucinations in the VQA model
’s description

13 - Get more information about the detected object.
14 Every question should be in this format: "<

question content>? You must answer only with
Yes, No, or ?=I don’t know." This allows us
to assess the likelihood of the answers.

15

16

17 Ensure your output follows the following format:
18 YAML_START # must be present to get the

information back
19 attributes_of_the_image:
20 <attribute name>: "<attribute value>" #

summarize all the known attributes from the
description, enclosed in " "

21

22 questions_for_detected_object: # question for the
detected object, if any

23 <Question number>: "<question>? You must
answer only with Yes, No, or ?=I don’t know."

24 reasoning_for_detected_object:
25 <Question number>: <reasoning>
26 YAML_END # must be present to get the information

back



27

28 Provide your reasoning step-by-step, after the
YAML_END tag."""

I.5. Prefined - Refined image description

1 P_refined = """
2 You are an intelligent embodied agent equipped

with an RGB sensor, an object detector, and a
Visual Question Answering (VQA) model.

3 Your task is to refine an image description based
on certainty estimates and user interactions
.

4

5 Scenario:
6 The detector has identified a scene with a {

target_object}. The VQA model provided this
initial scene description:

7

8 <START_OF_DESCRIPTION>
9 {distractor_object_description}

10 <END_OF_DESCRIPTION>
11

12

13 Questions asked and responses:
14 <START_QUESTION_AND_RESPONSES>
15 {list_questions_answers_uncertainty_labels}
16 <END_QUESTION_AND_RESPONSES>
17

18 Task:
19 Using the questions/answer pairs with uncertainty

labels, refine the image description.
20 Since we have to find a {target_object}, put

enphasis on it. Do not include in the
description information that is labeled as
uncertain.

21

22 Ensure your response follows the format below:
23 YAML_START # must be present to get the

information back
24 attributes_of_the_image:
25 <attribute name>: "<attribute value>" #

summarize all the known attributes from the
description, enclosed in " "

26 image_description_refined: <insert refined
description> # Ensure that the string does
not contain a newline (\n) after the tag
image_description_refined:

27 YAML_END # must be present to get the information
back

28

29 Provide your reasoning step-by-step, after the
YAML_END tag."""

I.6. Pscore - Alignment score

1 P_score = """
2 You are an intelligent agent equipped with an RGB

sensor, object detector, and Visual Question
Answering (VQA) model.

3 Your goal is to identify a target {target_object}
based on a scene description and prior
knowledge of the target.

4

5 Scenario:
6 The object detector has identified a scene

containing a {target_object}, and the VQA
model has provided the following description:

7

8 <START_OF_DESCRIPTION>
9 {distractor_object_description}

10 <END_OF_DESCRIPTION>
11

12 Target object information:
13 Based on previous interactions, you know the

target picture has the following
characteristics:

14 <START_TARGET_PICTURE_FACTS>
15 {facts_about_the_target_picture}
16 <END_TARGET_PICTURE_FACTS>
17

18 Task:
19 1. Similarity analysis.
20 Analyze how closely the detected scene

description aligns with the known facts about
the target {target_object}. Provide a
similarity score between 0 and 10, where:

21 - 0 = The detected {target_object} is not the
target object.

22 - 10 = The detected {target_object} is definitely
the target object.

23 - If no information about the target is available
, the score should be -1.

24

25 2. Question Generation:
26 - The question is for the target object, not the

detected one.
27 - Ask exactly one specific, relevant, and human-

answerable question related to the target
object that maximizes information gain for
identifying the target {target_object}.

28 - Do not ask speculative or irrelevant questions
29 - The question should be grounded in observable

or known details from the scene, focusing on
key characteristics that can help confirm or
refute the identity of the target object.

30

31 Ensure your response follows the format below:
32 YAML_START # must be present to get the

information back
33 similarity_score: <similarity score>
34 questions:
35 <question_number>: <question_content>
36 YAML_END # must be present to get the information

back
37

38 Provide your reasoning step-by-step for the
similarity score and questions, after the
YAML_END tag."""

J. Algorithm
We first present the complete AIUTA’s algorithm in Sec. J.1.
As outlined in the main paper (Sec. 4), AIUTA enriches
the zero-shot training policy VLFM [63]. Specifically, we
detail the input/output structure of AIUTA regarding VLFM
policy π, as well as AIUTA’s main component, i.e., the
Self Questioner (see Sec. J.2) and the Interaction Trigger
(Sec. J.3).

J.1. AIUTA Algorithm
Algorithm 1 outlines the complete AIUTA pipeline. Upon
detecting a candidate object, AIUTA first invokes the Self



Questioner module (shown in Sec. J.2) to obtain an accurate
and detailed understanding of the observed object and to
reduce inaccuracies and hallucinations, obtaining a refined
observation description Srefined. Then, with the known
facts about the target instance and the refined description,
AIUTA invokes the Interaction Trigger module (Sec. J.3)
for up to 4 iterations rounds (i.e., Max Iteration Number
= 4), as specified in Sec. 6 under Implementation Details.
Within each interaction round, if AIUTA returns the STOP
action, then the policy π terminates the navigation since the
target instance is found; otherwise, the policy π continues
the navigation process.

Algorithm 1 AIUTA
Require: Target object facts F , Observation Ot, policy π,

Candidate Object Detection, Max Iteration num-
ber

▷ Upon candidate object detection
1: Srefined ← Self Questioner(F,Ot) ▷ enrich details

and reduce inaccuracy, obtain a refined description
2: if Srefined = “ ” then
3: π(CONTINUE EXPLORING) ▷ VQA detection

failed, Signal to policy π to continue exploration
4: for each iteration in Max Iteration Number do
5: aiuta action← Interaction Trigger(F, Srefined)
6: if aiuta action = STOP then
7: π(STOP) ▷ Signal to policy π that the object is

found! Terminate exploration
8: else
9: π(CONTINUE EXPLORING) ▷ Signal to pol-

icy π to continue exploration

J.2. Self Questioner

Algorithm 2 Self Questioner Module
Require: Target object facts F , Uncer-

tainty Threshold τ , Observation Ot,
Pinit, Pdetails, Pcheck, Pselfquestions, Prefined

1: Step 1: Detailed Detection Description, from Sinit to
Senriched

2: Initial scene description: Sinit ← VLM(Ot, Pinit)
3: Self-generate questions to enrich description

Qdetails
a→a ← LLM(Pdetails, Sinit, F )

4: for each question qj in Qdetails
a→a do

5: ra→a ← VLM(Ot, qj) ▷ Get answers
6: Sinit ← concatenate(Sinit, ra→a)
7: Senriched ← Sinit ▷ Updated scene description
8: Step 2: Perception Uncertainty Estimation
9: (rcheck, ucheck) ← VLM(Ot, Pcheck)▷ Check detection

with uncertainty
10: if NOT (rcheck = “Yes” AND ucheck = “Certain”) then
11: return “ ” ▷ empty string, thus continue exploring
12: Qattribute

a→a ← LLM(Pself questions, F, Senriched) ▷ Gener-
ate self-questions to verify attributes

13: Container← {} ▷ Store question, answer, uncertainty
14: for each question qj in Qattribute

a→a do
15: (rj , uj)← VLM(Ot, qj)▷ Get answers and uncer-

tainties
16: Container← concatenate(Container, {qj , rj , uj})

17: Step 3: Detection Description Refinement
18: Srefined ← LLM(Prefined,Container, Senriched) ▷ Filter

out uncertain attributes
19: return Srefined



J.3. Interaction Trigger

Algorithm 3 Interaction Trigger
Require: Target object facts F , Refined observation de-

scription Srefined, Pscore, τstop and τskip
1: (s, qa→u)← LLM(Pscore, Srefined, F )▷ get alignment

score s, and question for the human qa→u

2: if s ≥ τstop then
3: return STOP ▷ target found, stop navigation.
4: else if s < τskip then
5: return CONTINUE EXPLORING ▷ skip the ques-

tion and continue exploring
6: else
7: ru→a ← Ask Human(qa→u) ▷ posing clarifying

question qa→u from the agent to the human.
8: F ← Update Facts(F, ru→a) ▷ update target object

facts F


