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Supplementary Material

A. Details of Subjects200K datasets

We present a comprehensive synthetic dataset constructed
to address the limitations in scale and image quality found
in previous datasets [23, 27, 28, 47]. Our approach lever-
ages FLUX.1-dev [24] to generate high-quality, consistent
images of the same subject under various conditions.

Subjects200K dataset currently consists of two splits,
both generated using similar pipelines. Split-1 contains
paired images of objects in different scenes, while Split-2
pairs each object’s scene image with its corresponding stu-
dio photograph. Due to their methodological similarities,
we primarily focus on describing the synthesis process and
details of Split-2, although both splits are publicly available.
Our complete Subjects200K dataset can be fully accessed
via this link.

A.1. Generation pipeline

Our dataset generation process consists of three main
stages: description generation, image synthesis, and qual-
ity assessment.

Description Generation We employed ChatGPT-4o to
create a hierarchical structure of descriptions: We first gen-
erated 42 diverse object categories, including furniture, ve-
hicles, electronics, clothing, and others. For each category,
we created multiple object instances, totaling 4,696 unique
objects. Each object entry consists of: (1) A brief descrip-
tion, (2) Eight diverse scene descriptions, (3) One studio
photo description. Figure A2 shows a representative exam-
ple of our structured description format.

Image Synthesis We designed a prompt template to
leverage FLUX’s capability of generating paired images
containing the same subject. Our template synthesizes a
comprehensive prompt by combining a brief object descrip-
tion with two distinct scene descriptions, ensuring subject
consistency while introducing environmental variations.

The detailed prompt structure is illustrated in Figure A3.
For each prompt, we set the image dimensions to 1056!528
pixels and generated five images using different random
seeds to ensure diversity in our dataset. During the train-
ing process, we first split the paired images horizontally,
then performed central cropping to obtain 512!512 pixel
image pairs. This padding strategy was implemented to ad-
dress cases where the generated images were not precisely
bisected, preventing potential artifacts from appearing in the
wrong half of the split images.

Quality assessment We leveraged ChatGPT-4o’s vision
capabilities to rigorously evaluate the quality of images gen-
erated by FLUX.1-dev. The assessment focused on multiple
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Figure A1. Examples of successful and failed generation results
from Subjects200K dataset. Green checks indicate successful
cases where subject identity and characteristics are well preserved,
while red crosses show failure cases.

critical aspects:
• Image composition: Verifying that each image properly

contains two side-by-side views.
• Subject consistency: Ensuring the subject maintains iden-

tity across both views.
• Image quality: Confirming high resolution and visual fi-

delity.
To maintain stringent quality standards, each image under-
went five independent evaluations by ChatGPT-4o. Only
images that passed all five evaluations were included in our
training dataset. Figure A1 presents representative exam-
ples from our quality-controlled dataset.

A.2. Dataset Statistics

In Split-2, we first generated 42 distinct object categories,
from which we created and curated a set of 4,696 detailed
object instances. Then we combine these descriptions to
generate 211,320 subject-consistent image pairs. Through
rigorous quality control using GPT-4o, we selected 111,767
high-quality image pairs for our final dataset. This exten-
sive filtering process ensured the highest standards of image
quality and subject consistency, resulting in a collection of
223,534 high-quality training images.



{
"brief_description":

"A finely-crafted wooden seating piece.",
"scene_descriptions": [

"Set on a sandy shore at dusk, it faces the ocean with a gentle breeze rustling
nearby palms, bathed in soft, warm twilight.",

"Positioned in a bustling urban cafe, it stands out against exposed brick walls,
capturing the midday sun through a wide bay window."

// Additional six scene descriptions omitted
],
"studio_photo_description":

"In a professional studio against a plain white backdrop, it is captured in three-
quarter view under uniform high-key lighting, showcasing the delicate grain and smooth
of its finely-crafted surfaces."

}

Figure A2. An example of our structured description format for dataset generation.

prompt_1 = f"Two side-by-side images of the same object: {brief_description}"
prompt_2 = f"Left: {scene_description1}"
prompt_3 = f"Right: {scene_description2}"
prompt_image = f"{prompt_1}; {prompt_2}; {prompt_3}"

Figure A3. Our prompt template for paired image generation. The template combines a brief object description with two distinct scene
descriptions to maintain subject consistency while varying environmental conditions.

"In a bright room, it is placed
on a table near a window."
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Figure A4. Comparison of models trained with different data. The
model trained by data augmentation tends to copy inputs directly,
while model trained by our Subjects200K generates novel views
while preserving identity.

B. Additional experimental results

B.1. Effect of training data

For subject-driven generation, our model takes a reference
image of a subject (e.g., a plush toy or an object) and a text

description as input, aiming to generate novel images of the
same subject following the text guidance while preserving
its key characteristics.

To validate the effectiveness of our Subjects200K
dataset described in Section 3.3, we compare two training
strategies for this task. The first approach relies on tra-
ditional data augmentation, where we apply random crop-
ping, rotation, scaling, and adjustments to contrast, satura-
tion, and color to the original images. The second approach
utilizes our Subjects200K dataset. As shown in Figure A4,
the model trained with data augmentation only learns to
replicate the input conditions with minimal changes. In the
first row, it simply places the taco plush toy in a bright room
setting while maintaining its exact appearance and pose.
Similarly, in the second row, the yellow alarm clock is re-
produced with nearly identical details despite the window-
side placement instruction. In contrast, our Subjects200K
-trained model demonstrates the ability to generate diverse
yet consistent views of the subjects while faithfully follow-
ing the text prompts.

B.2. Evaluation for subject-driven generation

Framework and criteria. To systematically evaluate
subject-driven generation quality, we establish a framework
with five criteria assessing both preservation of subject char-
acteristics and accuracy of requested modifications:
• Identity Preservation: Evaluates preservation of essen-



Setting Controllability Image quality Alignment

F1→ SSIM→ CLIP-IQA→ MAN-IQA→ MUSICQ→ PSNR→ FID↑ CLIP-Text→ CLIP-Image→

OminiControl (FLUX.dev) 0.502 0.454 0.663 0.616 74.9 11.3 24.2 0.305 0.785
+ Shifted Position Encoding 0.488 0.408 0.675 0.615 75.9 11.8 23.6 0.302 0.768
+ Derect Addition 0.212 0.371 0.615 0.495 71.8 11.1 20.1 0.306 0.734
+ Derect Addition (Zero-gate) 0.224 0.384 0.624 0.501 73.3 11.2 21.1 0.304 0.746

OminiControl (SD3.5 medium) 0.386 0.377 0.656 0.527 73.8 9.6 21.5 0.312 0.770

Table A1. Evaluation on Canny-to-Image task.

Figure A5. User study results comparing methods across
identity consistency, text-image alignment, and visual co-
herence.

Method Identity Material Color Natural Modification Average
preservation quality fidelity appearance accuracy score

Average over 5 random seeds

IP-Adapter (SD 1.5) 29.4 86.1 45.3 97.9 17.0 55.1
SSR-Encoder 46.0 92.0 54.2 96.3 28.5 63.4
IP-Adapter (FLUX) 11.8 65.8 30.8 98.1 57.7 52.8
Ours 50.6 84.3 55.0 98.5 75.8 72.8

Best score over 5 random seeds

IP-Adapter (SD 1.5) 56.3 98.9 70.1 99.7 37.2 72.5
SSR-Encoder 64.3 99.2 74.4 99.1 53.6 78.1
IP-Adapter (FLUX) 27.5 86.1 53.6 99.9 74.9 68.4
Ours 82.3 98.0 88.4 100.0 90.7 91.9

Table A2. Quantitative evaluation results (in percentage). Higher is better.

tial identifying features (e.g., logos, brand marks, distinc-
tive patterns)

• Material Quality: Assesses if material properties and
surface characteristics are accurately represented

• Color Fidelity: Evaluates if colors remain consistent in
regions not specified for modification

• Natural Appearance: Assesses if the generated image
appears realistic and coherent

• Modification Accuracy: Verifies if the changes specified
in the text prompt are properly executed
The results of these evaluations are summarized in Ta-

ble A2. We report both average scores across five random
seeds and the best scores achieved by any seed. Our method
outperforms baselines in most criteria, achieving the highest
average score of 72.8% and the best score of 91.9% across
all criteria.

User studies. To further validate our approach, we con-
ducted user studies collecting 375 valid responses. Partic-
ipants evaluated the generated images across three key di-
mensions: identity consistency, text-image alignment, and
visual coherence between subjects and backgrounds. The
results shown in Figure A5 corroborate our quantitative
findings, with our method achieving superior performance
across all evaluation criteria.

B.3. Generality to other DiT models

We further demonstrate the general applicability of our ap-
proach by applying it to SD3.5-medium (2.6B), a represen-
tative DiT variant. The qualitative and quantitative evalua-
tions, shown in Figure A6 and Table A1 respectively, con-
firm consistent improvements.

Figure A6. SD3.5 with OminiControl

B.4. Ablation on shifted position encoding

To investigate whether shifted Rotary Position Embedding
(RoPE) influences model performance, we compare shifted
and unshifted encoding variants in an ablation study (Ta-
ble A1). Results show minimal differences between these
two settings, suggesting that employing shifted RoPE does
not substantially impact the quality of generated images in
spatially aligned tasks.

B.5. Computational cost

To quantify the computational overhead introduced by uni-
fied sequence processing, we compare inference times
against representative baselines (see Table A3). Our results
indicate that although the unified approach does incur addi-
tional computational costs, these can be substantially miti-
gated through a key-value (KV) caching mechanism, which
caches condition-token key/value pairs to avoid redundant
computations. Further optimizations and refinements of this
KV-cache strategy will be investigated in future research.

B.6. Evaluation of inpainting task

To better characterize our model’s performance in the in-
painting scenario, we separately evaluate reconstruction
quality in the inpainted and non-inpainted regions. Ta-
ble A4 provides a detailed breakdown, reporting not only



Setting Extra
parameters

Inference
time (second)

IP-Adapter 918M / +7.6% 8.32
ControlNet 3.3B / +27.5% 9.02
OminiControl 14.5M / +0.1% 13.93

+ KV-cache 14.5M / +0.1% 8.62

Table A3. Efficiency comparison

overall SSIM and PSNR but also MSE focused explicitly
on non-inpainted areas. Results confirm that OminiControl
achieves 45–70% lower error compared to baselines, indi-
cating enhanced fidelity for reconstructed details and supe-
rior preservation of unaltered regions.

B.7. Additional generation results

We showcase more generation results from our method.
Figure A8 presents additional results on the DreamBooth
dataset, while Figure A9 demonstrates our method’s effec-
tiveness on other subject-driven generation tasks.



Method Overall Inpainted region Non-inpainted region

MSE → SSIM ↑ PSNR ↑ MSE → SSIM ↑ PSNR ↑ MSE →

ControlNet 907 0.6798 18.9584 7588 0.2482 9.7815 219
Flux Tool 1087 0.7282 18.3723 6610 0.2267 10.409 122
OminiControl 860 0.7808 19.5898 6351 0.2554 10.697 66

Table A4. Breakdown of Inpainting Results.



Figure A7. More comparative results.



Figure A8. More results on Dreambooth dataset.



Figure A9. More results on other subject-driven generation tasks.


