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ReTracker: Exploring Image Matching for Robust Online Any Point Tracking

Supplementary Material

DAVIS Ego-Retrack
Training AJ < δxavg OA AJ < δxavg OA

S(ScanNet) 63.3 77.4 87.8 43.9 55.7 82.0
M(Megadepth) 63.3 77.3 88.1 42.3 54.5 81.9
M + S 63.5 77.6 88.0 44.3 56.6 82.2

Table 1. Ablation of the Pre-training Dataset.

1. Implementation Details001

1.1. The Details of our model002

Backbone. Following recent image matching network003
[2, 4], We extract 8× and 2× feature map by ResNet18 with004
FPN, and 16× feature by DINOv2 with Vit-L/14 backbone.005
We use a trainable autoencoder to encode the feature dimen-006
sion from 1024 to 384. The dimensions of 8× and 2× fea-007
ture map are 256 and 128, respectively.008

Spatial-Temporal Attention Blocks. Following [4], the009
temporal block consists of a cross-attention local feature010
Transformer. Given features in the initial frame Finit, fea-011
tures in current frame Fcur, initial Frame History Tokens012
Tinit and Current Frame History Tokens Tcur, the Spatial-013
Temporal Attention Blocks integrates spatial and temporal014
dependencies by:015

Finit, Tinit = CA(Finit, Tinit),

Fcur, Tcur = CA(Fcur, Tcur),

Finit, Fcur = CA(Finit, Fcur).

(1)016

Here, CA denotes Cross Attention Blocks. Updated features017
Finit and Fcur are then feed into next step. We use the Trans-018
former Decoder introduced in [2] to decode the match dis-019
tribution map of each query point in the current frame.020

4D Correlation and Encoding. The 4D correlation021
operation is widely used in image matching methods.022
LocoTrack[1] is the first to introduce the 4D correlation023
component into the point tracking task. We utilize this tech-024
nique in our pipeline, too. As described in the main paper,025
the 4D correlation matrix of query and current patches are026
encoded from w × w × w × w to w × w × c. Here, we027
employ the encode operation introduced in [2] too.028

Spatial-Temporal Attention in Multi-Scale Local Re-029
finement Block. The spatial-temporal attention block in030
multi-scale Local Refinement Block takes mixed 4D tokens031
with the shape of B × T ×N × C as input. We employ the032
spatial attention in the N channel and temporal attention in033
the T channel, respectively.034

Decoder in Multi-Scale Local Refinement Block The035
Decoder takes the spatial-temporal enhanced 4D tokens as036

input, and aggregated the information from temporal chan- 037
nels T and spatial channels N by weighted average oper- 038
ations. The mixed tokens are decoded by a tiny MLP to 039
produce the ∆x, ∆y , logitocc and logitexp. The outputs are 040
supervised by the objectives described in the main text. 041

1.2. Image matching Pretraining 042

We initially pre-train our model using wide-baseline image 043
pairs to learn correspondences between two images with co- 044
visible areas. We use MegaDepth [3] and ScanNet++ [5] to 045
train the matching backbone. These datasets provide esti- 046
mated depth and pose generated via structure-from-motion 047
and multi-view stereo (MVS) methods. In the image match- 048
ing task, these datasets are often used to obtain pixel-level 049
correspondence supervision between two images. For each 050
image pair with co-visible area, we sample 1000 points with 051
ground truth correspondence to supervise our model. The 052
optimizer is AdamW with β1 = 0.9, β2 = 0.999, learning 053
rate 2e − 4, and weight decay 1e − 5. We use 8 NVIDIA 054
A100 GPUs for pre-training the matching task with a batch 055
size of 256 for 200,000 steps. We use mixed precision pro- 056
vided by PyTorch-lightning framework during training. 057

Moreover, we observed that the model pre-trained on the 058
ScanNet++ dataset leads to faster convergence than training 059
on Megadepth and is prone to have better performance on 060
downstream tracking tasks. Training on both datasets pro- 061
motes the performance further. 062

1.3. Point Tracking Training 063

Subsequently, we fine-tune the model with video sequences. 064
We pre-train the tracking backbone without temporal blocks 065
in the Megadepth and ScanNet++ dataset. Due to the re- 066
striction of GPU memory, we train the global tracking block 067
and local refinement block separately. For the training of the 068
global tracking block, we initialize the parameters from pre- 069
trained matching task and fine-tune the model on the Kubric 070
dataset. We use 11000 sequences generated by this engine 071
and fine-tune the whole model. 072

1.4. Re-track Strategy 073

Owing to the smoothness prior of spatial motion, the posi- 074
tion of the query point in the subsequent frame is typically 075
in the vicinity of the preceding frame. Therefore, global re- 076
tracking is employed in the subsequent frame only when the 077
local prediction confidence falls below a threshold in the last 078
frame. For more challenging datasets, a higher re-tracking 079
threshold is utilized, whereas for relatively simpler motion 080
datasets, a lower threshold is selected. Specifically, the cor- 081
rection thresholds are set to 0.05 and 0.2, respectively. 082
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1.5. History feature Patches Selection083

During the refinement stage, we incorporate patches from084
multiple frames into the temporal attention Transformer. To085
collect representative feature patches, we employ different086
strategies for training and inference stage. In the training087
stage, we simply store the features of the nearest N frames088
in the memory and utilize these features for attention com-089
putation. In the inference stage, only patches with high pre-090
diction confidence are stored in the memory.091

1.6. Clearification about Matching Advancements092

“Matching Advancements” refers to our adaptation of the093
core model components from image matching task to point094
tracking. Specifically, our model adapts the strong Trans-095
former Encoder-Decoder structure from two-view matching.096
This structure helps to effectively handle large viewpoint097
changes caused by long-term occlusion and robust re-track098
points.099

1.7. How patches are compressed into w × w × c100

We construct pairs of feature patches between the new frame101
and each history frame (n pairs in total). Each pair is pro-102
cessed by 4D correlation, yielding a correlation map of size103
w×w×w×w. Then, we employ an encoder on this corre-104
lation map, which compress it to w × w × c.105

1.8. Memory capacity for long-term tracking106

Our method enables re-tracking across long gaps. The key107
lies in explicitly attending new frame with the initial frame108
during temporal attention processes, providing consistent109
context about the query points. The memory mechanism110
further helps bridge the feature gap among these frames.111

1.9. Recent frames selection112

We employ a logarithmic sampling strategy to select m113
frames from history frames, where frames closer to the cur-114
rent time are sampled more frequently.115

2. Evaluation Metrics116

Metrics: We evaluate tracking performance using metrics117
from the TAP-Vid benchmark, including Occlusion Accu-118
racy (OA), which evaluates visibility prediction accuracy;119
δavg, the mean proportion of correctly tracked visible points120
within specified pixel thresholds (1, 2, 4, 8, and 16 pix-121
els); and Average Jaccard (AJ), which measures both visibil-122
ity and localization precision together. We adhere to TAP-123
Vid’s standard evaluation procedure, which involves down-124
sampling videos to 256× 256 pixels.125

3. Limitation and Future Work126

Firstly, the computational overhead during inference is rela-127
tively high (12 fps on a single NVIDIA RTX 4090 GPU us-128

ing mixed-precision), which hinders real-time performance. 129
We will optimize our method to enable faster querying of a 130
larger number of points, thereby improving efficiency. Ad- 131
ditionally, our approach currently exhibits instability in re- 132
gions with weak textures. We plan to enhance the robustness 133
of our method to ensure stable performance even in such 134
challenging scenarios. 135

In future work, we aim to enhance the matching capabili- 136
ties of the global matching module to improve its robustness 137
and accuracy for point tracking across various scenes. This 138
will involve refining the module’s architecture to better han- 139
dle complex and dynamic environments. Additionally, we 140
plan to optimize memory management strategies to enable 141
the model to more efficiently utilize historical information. 142
This will be achieved by developing adaptive memory mech- 143
anisms that dynamically select and retain the most relevant 144
features from previous frames, thereby improving computa- 145
tional efficiency and tracking performance. Furthermore, we 146
intend to integrate priors from online video object segmen- 147
tation into the tracking framework. This integration will al- 148
low the model to leverage semantic information from video 149
data, thereby enhancing its ability to understand and predict 150
object motion in a semantically informed manner. 151

4. Ego-Retrack Dataset 152

Our dataset comprises 30 egocentric videos, with primary 153
sources including open-access YouTube repositories and 154
Ego4D collections (collectively accounting for 83% of sam- 155
ples), supplemented by custom first-person recordings of 156
scene-specific interactions in controlled environments. The 157
substantial majority of sequences contain 300-600 frames, 158
providing sufficient temporal context for tracking analy- 159
sis while reflecting real-world interaction durations. These 160
sequences emphasize object reappearance challenges un- 161
der significant viewpoint variations, particularly during en- 162
try/exit events where abrupt perspective shifts degrade track- 163
ing performance. Following the TAP-Vid-Kinetics annota- 164
tion pipeline, expert annotators labeled 5-10 semantically 165
consistent tracking points per video across multiple objects, 166
preserving spatial details at the original 768×480 resolution. 167
All data were standardized to 256× 256 resolution for eval- 168
uation, aligning with the resolution conventions of main- 169
stream tracking benchmarks. 170

References 171

[1] Seong Hun Cho, Seokju Hong, and Seungryong Kim. Local 172
all-pair correspondence for point tracking. In Proceedings of 173
the European Conference on Computer Vision (ECCV), pages 174
366–383, Cham, 2024. Springer. 1 175

[2] Johan Edstedt, Qiyu Sun, Georg Bökman, Mårten Wadenbäck, 176
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Figure 1. More Qualtative Results. Our method is qualtatively
compared with CoTracker3 (online) on the Ego-ReTrack dataset.
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