Towards Privacy-preserved Pre-training of Remote Sensing Foundation Models
with Federated Mutual-guidance Learning

Supplementary Material

A. Overview

We provide the following materials to supplement our paper

and divide them into two sections.

* We provide the theoretical analysis of our proposed Fed-
Sense in Sec. B.

* We provide the details of our pre-training datasets and
downstream datasets in Sec. C

B. Theoretical Analysis
B.1. Assumptions

Assumption 1 (Smoothness) The self-supervised loss L5
is L-smooth:
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Assumption 2 (Bounded Gradient) Local gradients are
bounded:
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Assumption 3 (Parameter Discrepancy) The  discrep-
ancy between local and global models satisfies:
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where 0 quantifies the maximum client drift.

B.2. Key Lemmas

Lemma 1 (Optimal Perturbation Bound) Under As-
sumption 2, the optimal perturbation € in SCG satisfies:
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Proof 1 From the perturbation approximation:
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Using the parameter discrepancy term V L35¢ = 3(6),,, —©)
and Assumption 3:
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Combining with the gradient bound G via the triangle in-
equality completes the proof.

Lemma 2 (Quantization Error Decay) Let el, be the
feedback error in CSG. With momentum factor o € (0, 1),
the error decays geometrically:
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where e’; is the quantization error at round k.
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Proof 2 Unrolling the recursive error update:
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Taking norms and applying the triangle inequality:
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The geometric series bound completes the proof.
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B.3. Main Convergence Result

Theorem 1 (Convergence Guarantee) Under  Assump-
tions 1-3, let learning rate v = After T rounds, the

averaged gradient satisfies:
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where C'is a constant combining L, G, 3, \.

Proof 3 (Proof Sketch) Using smoothness (Assump. 1):
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Substituting the update rule Ol = @t — (VL0 4 t):
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Hyperparameters analysis. We provide more analysis
on some hyperparameters A, p, and « in Fig. 4. They are
insensitive to the performance of FedSense with our self-
stabilized design.



g

*
[

3 o025
2

-3

5

uracy (OA) (%) on RESISC45
g

g

Overall Accy

04 06 08 01 03 05 07 08

(@)X ) p ©a
Figure 4. Hyperparameters analysis on )\, p, and a.
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Figure 5. Pipeline of privacy-preserved pre-training of RSFMs.

C. Dataset details and implementation details

Scene Classification.

(1) Aerial Image Dataset (AID) [55]. This dataset is com-
prised of 10,000 images across 30 classes, all sourced
from Google Earth and cropped to 600x600 pixels. It
also includes diverse resolutions from 0.5 to 8 meters
per pixel and geographic variations to enhance robust-
ness.

(2) NWPU-RESISC45 [8]. This dataset comprises 31,500
RGB images at resolutions from 0.2m to 30m across
45 scene classes, each with 700 samples with a size of
256 times 256 pixels. It offers significant variability in
translation, scale, viewpoint, illumination, and occlu-
sion. It also has high within-class diversity and inter-
class similarity.

Object Detection.

(1) DIOR-R [9]. This dataset consists of 23,463 remote
sensing images, with 192,472 annotated object in-
stances spanning 20 categories. The size of each image
is 800x 800 pixels, and spatial resolutions range from
0.5m to 30m. With emphasis on high inter-class sim-
ilarity, intra-class diversity, and object size variability,
it is designed to benchmark object detection methods
in diverse conditions such as different imaging times,
weathers, and resolutions.

(2) DOTA-v1.0 [56]. This dataset consists of 2,806 aerial
images, measuring from 800x800 to 4000 %4000 pix-
els, annotated with 188,282 instances across 15 cat-
egories that include airplanes, ships, vehicles, and
bridges. The objects in this dataset are presented in di-
verse scales, orientations and aspect ratios.

Semantic Segmentation.

(1) LoveDA [52]. This dataset for domain-adaptive seman-
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Figure 6. Illustration on downstream usage of collaboratively
pre-trained RSFMs to accommodate various Earth Observa-
tion tasks.

2

D

2

tic segmentation features 5,987 images with a spatial
resolution of 0.3 m, each sized at 1024 x 1024 pixels
in RGB format. Covering 536.15 km?, it spans urban
and rural areas across Nanjing, Changzhou and Wuhan,
and includes pixel-level annotations across seven land-
cover categories. It addresses challenges of multi-
scale objects, complex backgrounds, and inconsistent
class distributions, supporting semantic segmentation
and unsupervised domain adaptation.

Inria [38]. This dataset comprises high-resolution RGB
aerial imagery, with 180 training and 180 test tiles (each
1500 1500 pixels, 0.3 m resolution). It focuses on two
classes: building and non-building, covering a total of
405 km? of urban areas across five cities in the U.S.
and Austria. The dataset emphasizes generalization
challenges, supporting semantic segmentation across
diverse urban landscapes.

Change Detection.

LEVIR-CD+ [6]. This dataset is a high-resolution ur-
ban building change detection dataset comprised of 985
RGB image pairs from Google Earth, each measuring
1024 %1024 pixels with a spatial resolution of 0.5 me-
ters per pixel. Spanning 20 regions in Texas, the dataset
includes building and land use change masks, covering
the years 2002 to 2020 with a 5-year observation in-
terval. It features predominantly urban areas and near-
nadir imagery, making it accessible for change detec-
tion studies.

SECOND [62]. This dataset is a large-scale semantic
change detection benchmark, comprising 4,662 image
pairs, each with a size of 512x512 pixels. The images

were collected from multiple platforms across multi-
ple cities including Hangzhou, Chengdu, and Shang-
hai. It focuses on six land-cover classes: non-vegetated
ground surface, tree, low vegetation, water, buildings,
and playgrounds. SECOND also offers approximately
30 change types, including changes within the same
land-cover class, with pixel-level annotations ensuring
high diversity and label accuracy.

1D Source #samples GSD (m) Coverage

Server WorldView-3/4 240,000 0.5-2.5 Global
Client 01 NOAA 22292 0.25 USA
Client 02 GF-2 27,300 4.0 China
Client 03 WorldView-2 88,272  0.3-0.5 Global
Client 04 Mixed 125,474  0.3-25 Global
Client 05  QB-2/GE-1 180,562 0.3 Global
Client 06  JL-1/GF-7 40,816 0.8 China
Client 07 Mixed 90,000 0.3-25 Global
Client 08  QB-2/GE-1 180,000  0.3-25 Global
Client 09 NAIP 45,000 1.25 USA
Client 10 Mixed 50,800 0.3-0.75  Global

Total Multi-source 1,000,000 0.25-25 Global

Table 7. Details of the pre-training datasets.
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