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A. Brief descriptions of different modalities
Magnetic Resonance Imaging (MRI) scans [56]: use
strong magnetic fields and radiofrequency currents yielding
distinct sequences. Typically, MRI has different modalities,
include T1, T2, T1ce and Flair.

Computed Tomography (CT) scans [35, 54] employ
X-rays to measure its attenuation.

Positron Emission Tomography (PET) scans are ex-
pensive functional imaging scans that employ radiotracers
emitting gamma rays to visualize and measure metabolic
processes. Thus, PET scans have a large percentage of
background areas.

B. Related work
Medical generalization tasks. Most current work focuses
on homogeneous generalization, introducing tasks such as
modality transfer and missing modality segmentation. The
most commonly employed structural modalities — Flair,
T1, T2, and T1ce of MRI — are used for brain tumor seg-
mentation [56], or between MRI and CT [54] for modality
transfer. [36] propose an approach for heterogeneous gen-
eralization in terms of modality transfer, but only tailored
for transferring PET to CT.

Self-supervised medical pre-train models for medi-
cal generalization. Our approach aims to learn the Xh

through pre-training. We list related medical pre-training
work [9, 25, 42, 49] here. A notable work among them
is [25], which extracts class-specific anatomical invariance.
However, they only focus on a single modality. Such single-
modality approaches may not be able to construct Xh for
improving the generalization across modalities.

Alignment in multi-domain generalization. The issue
of cross-modality generalization is similar to the problem of
multi-domain generalization, which aims to extract domain
invariant representations [16, 22, 29, 30, 41]. Most of these
approaches focus on learning invariance across different do-
mains, which may not fit the scope of personalization.

Generalization for medical translation. Typical
modality transfer approaches are based on GAN mod-
els [15, 24, 28, 37, 58]. In contrast to these GAN-based ap-
proaches, some work adopts transformer models [32, 40],
while others, such as [13, 27, 35, 50], explore diffusion-
based approaches. The methods such as MedM2G [54] fur-
ther incorporate textual information for modality transfer.
Additionally, UNET-like architectures, which can also be
applied to these tasks, are highlighted in [19, 20]. Most cur-

rent modality transfer research focuses on improving syn-
thesis quality. Our approach, however, demonstrates that
full-modality transfer, when accompanied by specific con-
straints, not only enhances generation but also improves
downstream generalization.

Generalization for medical segmentation. There are
three main types of approaches to missing modality seg-
mentation. Knowledge distillation-based approaches trans-
fer knowledge from models with complete modality infor-
mation (teachers) to models with missing modality informa-
tion (students) [6, 45]. [14, 55] recover missing information
by leveraging the multimodal latent feature space. Domain
adaptation-based methods aim to reduce the gap between
models with complete and incomplete modalities by align-
ing their domains [46]. One prominent shared latent space
method, MmFormer [55], exploits intra- and inter-modality
dependencies for feature fusion, which is closely related to
our work. Our work reveals that our pre-train model with
basic segmentation tuning exceeds these approaches.

C. Limitations, challenges, and future work
To enhance the validation of our approach, we adhere to
commonly used settings during the tuning stage. Exploring
alternative strategies, such as knowledge distillation, could
further improve downstream performance. Our approach
requires datasets where all modalities are instance-level
matched, which can be a stringent condition and may be
unattainable for certain modalities. Future research should
explore methods to achieve personalized invariance without
relying on instance-level matched datasets. Additionally,
we advocate for the availability of more open-source multi-
modal medical datasets, particularly for functional modali-
ties, as these are not widely accessible to researchers.

D. Social impact
This work presents an approach to tackle multi-modality
generalization through personalization. We hope our work
can encourage the community to work towards practical,
personalized medical models with border generalization
ability.

E. Downstream segmentation ablation study
The effectiveness of our proposed components is demon-
strated alongside an exploration of the methodology em-
ployed to develop an individual-invariant representation.
Experimental results for downstream segmentation tasks



Table 7. Ablation study - Segmentation results of using different pre-train models on AutoPET-II: Comparison between the pre-train
models with different settings and ours. The best results are highlighted in blue and cyan.

ID Pretrian DICE→ DICE-→ TPR→ TNR→ FNR↑ FPR↑
1 + Contrastive + Decomposition + Equivariance 40.85 55.79 81.72 69.09 18.28 30.91
2 + Contrastive + Decomposition + Invariance 44.34 48.63 77.42 91.82 22.58 8.18
3 + Contrastive + Decomposition + Equivariance + Invariance 42.42 60.67 89.25 63.64 10.75 36.36
4 + Contrastive + Decomposition + Equivariance + O 46.31 55.77 83.87 82.73 16.13 17.27
5 + Contrastive + Decomposition + Invariance + O 44.42 57.80 88.17 74.55 11.83 25.45
6 + Contrastive + Decomposition + Equivariance + Invariance + O 48.20 61.16 88.17 77.27 11.83 22.72

and visualizations of the pre-trained models are presented
in Tab. 7. All experiments are conducted under consistent
settings to ensure a fair comparison.

Using all constraints together with O yields the best
results. Consistent with Sec. 3.1.2, the results indicate
that using different constraints alone may not guarantee im-
provements; however, incorporating all constraints along
with O results in the best outcomes. This validates the plau-
sibility of the Xh Hypothesis and demonstrates that achiev-
ing a good approximation of it significantly enhances gen-
eralization.

Using prior O with decomposition constraint im-
proves the model performance for different settings. De-
spite different settings, additionally using O with decompo-
sition improves the downstream model performance. Com-
bined with the improvements from modality transfer re-
sults in Tab. 4, it suggests that O helps in better obtaining
anatomical structure.

The invariance and equivariance constraints can not
be applied to the same feature. It needs to be highlighted
that invariance and equivariance constraints cannot be ap-
plied to the same features as they conflict with each other.
As shown in task 3, without O, invariance and equivariance
constraints are applied to the latent feature simultaneously,
leading to a significant performance drop. In comparison,
applying equivariance constraint before using O and apply-
ing the invariance constraint after using O yields the best
results. This is because the geometrical transformation con-
tained in zih needs to be accomplished by fetching other pos-
sible geometrical transformation information from O and
then fusing it to be invariant.

F. Experimental details
The model and data loaders are built by using
MONAI https://docs.monai.io/en/stable/
index.html. Please refer to all the details of the
implementation in the code. We present some key
implementations below.

F.1. Overall training procedure
A pseudo-code is provided for our approach. The loss cal-
culation for Pre-training procedure is simplified as Algo-

rithm 1 and Downstream tuning as Algorithm 2. It is no-
table that the empirical procedure is flexible as long as the
O is properly used to construct X→

h and those constraints are
applied to X

→

h.

F.2. Homogeneous generalization: structural
modalities in MRI

F.2.1. Pre-training and Modality transfer.
Experimental settings. Four A100 GPUs are employed for
training. The learning rate we used for the modality transfer
is set to 0.0002, and the training epoch is set to 1000. Both
the number of input and out channels is set as 4.

Training details. For the model, both the input and out-
put channels are set to 4, corresponding to the four MRI
modalities. All modalities are loaded and cropped to a size
of 96 ↓ 96 ↓ 96 simultaneously. Following [27], we also
normalize each MRI modality to have zero mean and unit
variance. During training, the background is excluded for
modal generation. A single modality is repeated four times
to create four channels during training to obtain X

i
h
→. The

training loss follows the Lpre, whose calculation details
during the training phase can be seen in Algorithm 1.

F.2.2. Missing modality segmentation.
Four A100 GPUs are employed for tuning. The learning
rate we used for the modality transfer is set to 0.0002, and
the training epoch is set to 1000. Both the number of input
and out channels is set as 4.

Training details. Following [40], we also normalize
each MRI modality to zero mean and unit variance. For
the fine-tuning, we employ Dice loss, the weighted cross-
entropy loss that is adopted by [40], and the additional Linv .

F.3. Heterogeneous generalization: PET and CT
modalities

F.3.1. Modality transfer
All models are trained using A100 GPUs. Training details.
All models are trained under the same situations, using the
same data pre-processing transforms.

F.3.2. Downstream segmentation
Training details. All training and fine-tuning experiments
use the same losses, while the approaches with our pre-train

https://docs.monai.io/en/stable/index.html
https://docs.monai.io/en/stable/index.html


Algorithm 1: Calculate losses during one step for
pre-training

Data: X ↔ X , epoch
Initialize learnable O E(·),D(·);
while i ↗= epoch do

X →

h ↘ None;
for h ↔ H do

for i ↔ M do
Lpre ↘ 0;
Xi

h ≃ X , ωi
≃ !;

Xi
h
+
, Xi

h
↑
= Augment(ωi(Xi

h));
(zih, x

i
h), (z

i
h
↑
, xi

h
↑
), (zih

+
, xi

h
+
) ↘

E(ωi(Xi
h)), E(X

i
h
↑
), E(Xi

h
+
);

Calculate Lcontr(zih, z
i
h
+
, zih

↑
),

Lpre+ = Lcontr;
F(zih) ⇐ ωi→;
Calculate Lequ(ωi→,ωi), Lpre+ = Lequ;
zih

→
:= Attn(query : zih, key :

O, value : O);
Xi

h
→
:= Conv(zih

→, zih) ;
if X →

h is not None ; /* For saving
memory */

then
Calculate Linv(Xi

h
→, X →

h),
Lpre+ = Linv;
X →

h := (Xh +Xi
h
→)/2;

else
X →

h := Xi
h
→ ;

end
Xi

h
→ := D(Xi

h
→, xi

h);
Calculate Ldecom(ωi↑1(Xi

h
→), Xh),

Lpre+ = Ldecom;
end

end
end

additionally use Linv for downstream fine-tuning. More-
over, we also compare the original architecture of Swin-
UNETR using our pre-trained weights with fully using our
architecture and our weights for fine-tuning.

F.4. Fine-tuning special case: Tuning from hetero-
geneous to homogeneous generalization with
domain gap

Training details. For the fine-tuning stage, we use the
decoder architecture of SwinUNETR, which is randomly
initialized. The training procedure is similar to the above
modality transfer experiments, with the primary difference
being that the input and output channels are set to two. Ad-
ditionally, we reproduced the results of UNETR and Swin-

Algorithm 2: Calculate losses during one step for
fine-tuning

Data: (X,Y ) ↔ (X ,Y), epoch
Load pre-trained O E(·),D(·);
while i ↗= epoch do

X →

h ↘ None;
for h ↔ H do

for i ↔ M do
Ldown ↘ 0;
(Xi

h, Yh) ≃ X,Y ;
(zih, x

i
h) ↘ E(Xi

h);
zih

→
:= Attn(query : zih, key :

O, value : O);
Xi

h
→
:= Conv(zih

→, zih) ;
if X →

h is not None ; /* For saving
memory */

then
Calculate Linv(Xi

h
→, X →

h),
Ldown+ = Linv;
X →

h := (Xh +Xi
h
→)/2;

else
X →

h := Xi
h
→ ;

end
Y →

h := D(Xi
h
→, xi

h);
Calculate Lori(Y →

h, Yh),
Ldown+ = Lori;

end
end

end

UNETR for comparison, ensuring that the same loss func-
tions were applied across models.

G. More results and analysis
G.1. More analysis on learnable biological prior
Analysis of O. We show that using O for Xh mainly accom-
plishes the personalized knowledge of each sequence from
MRI modalities. Those modalities are mainly focused on
the physical anatomy. For the Flair modality in MRI, which
mainly highlights the lesion but suppresses structures like
bones, Fig. 8 shows that without O, the main difference be-
tween the generated images and ground truth (GT) images
is the personalized structure. Prior O for Xh accomplishes
and refines the personal level anatomical information, miti-
gating the gap between them with the GT, so it can be better
transferred to other structural focusing modalities.

G.2. Segmentation results on AutoPET-II.
Detailed metrics results of AutoPET-II are presented in
Tab. 8. The results indicate that with proper model archi-
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Figure 7. Visualizations of generated modalities with T1 as input of our method, which allows the capturing of subtle structures.
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Figure 8. Visualization of the efficacy of prior O. Displayed are the generated modalities on the input Flair modality of a testing sample
on the BTATS21 dataset. Columns show: the generated images of the model (1) without prior O and (2) with prior O are aligned with
(3) the GT images. Typically, the differences between without and with prior O (the (2)-(1) column) are visualized to compare with the
differences between without O and GT (the (3)-(1) column). Red and blue refer to the positive (accomplishment) and negative (refinement)
values of the differences, respectively.

tecture, such as SwinUNETR, using both two modalities
usually outperforms solely using PET. It can be observed
that models using our pre-train improve the results across all
metrics. Typically, SwinUNETR using our pre-train signif-
icantly exceeds it without our pre-trained model, indicating
the personalized invariant learned by our pre-train general-
izes to the downstream well and can boost the downstream
tasks. Moreover, using our proposed components with the
pre-train leads to the best DICE and DICE-. This validates
that using the prior further emphasizes the personalized in-
variant, which yields the most segmentation improvements.

G.3. Modality transfer results on BRATS22.

Tab. 9 and Tab. 10 presents the generation result with stan-
dard derivations. The results of our method and Swin-
UNETR are produced by ourselves, while the rest of the
results are gathered from [27]. Generated examples are pre-
sented in Figs. 10 to 12.

G.4. Missing modality segmentation results on
BRATS18.

We provide detailed segmentation results on BRATS18 as
Tab. 11.



Method Dice↑ Dice-↑ TPR↑ TNR↑ FNR↓ FPR↓
From scratch

nnUnet [23] 33.10 - - - - -
SwinUNETR [19] 43.45 62.60 90.32 62.73 9.68 37.27

SwinUNETR with different pre-train
With pre-train in [42] 44.06 57.79 89.25 73.64 10.75 26.36
With ours 48.20 61.16 88.17 77.27 11.83 22.72

Table 8. Segmentation results of PET and CT on AutoPET-II: Comparison between the previous method and ours. The best results are
highlighted in blue.

Task T1→T2 T2 → Flair
Dimension Method PSNR↑ NMSE↓ SSIM↑ PSNR↑ NMSE↓ SSIM↑

Pix2Pix 24.624 ± 0.962 0.109 ± 0.028 0.874 ± 0.015 24.361 ± 1.061 0.117 ± 0.021 0.846 ± 0.019
CycleGAN 23.535 ± 1.334 0.155 ± 0.035 0.837 ± 0.028 23.418 ± 0.944 0.164 ± 0.033 0.825 ± 0.035
NICEGAN 23.721 ± 1.136 0.148 ± 0.029 0.840 ± 0.029 23.643 ± 1.045 0.148 ± 0.022 0.829 ± 0.033
RegGAN 24.884 ± 0.991 0.094 ± 0.024 0.881 ± 0.017 24.576 ± 1.073 0.112 ± 0.022 0.852 ± 0.028

2D

ResViT 25.578 ± 0.812 0.088 ± 0.021 0.895 ± 0.018 24.825 ± 1.030 0.108 ± 0.018 0.861 ± 0.021
CycleGAN 25.181 ± 0.861 0.097 ± 0.031 0.887 ± 0.012 24.602 ± 1.181 0.113 ± 0.021 0.854 ± 0.018

Pix2Pix 23.740 ± 1.198 0.138 ± 0.032 0.835 ± 0.019 23.508 ± 1.301 0.152 ± 0.039 0.822 ± 0.024
EaGAN 24.884 ± 0.991 0.094 ± 0.024 0.881 ± 0.017 24.576 ± 1.073 0.112 ± 0.022 0.852 ± 0.028

MS-SPADE 25.818 ± 0.857 0.079 ± 0.016 0.904 ± 0.012 25.074 ± 1.085 0.098 ± 0.021 0.867 ± 0.018
3D

Ours 30.756 ± 1.950 0.065 ± 0.034 0.944 ± 0.031 32.224 ± 2.518 0.046 ± 0.029 0.941 ± 0.025

Table 9. Modality transfer results of MRI on BRATS23: Comparison between previous methods and our method. The best results are
highlighted in blue.

Figure 9. TSNE of latent features of PET and CT images obtained
under different applied constraints. Downstream performances are
noted.

Non-personalized +ℒ!"# +All constraints

Dice: 43.5 Dice: 44.34 Dice: 48.20

G.5. Comparison with non-personalized methods.
We provide further visual evidence in Fig. 9 for an in-
depth analysis. Fig. 9 shows that applying our constraints
aligns CT and PET representations more closely, indicat-
ing smaller dG!G(M|H

S ,M|H
U ) in Paper Eq. (10), yield-

ing tightened bounds and better downstream performance
(Dice:48.20), in comparison to the non-personalized base-
line (Dice:43.5). This further supports our theoretical anal-
ysis.



Target T1 T1ce T2 Flair
Source PSNR↑ NMSE↓ SSIM↑ PSNR↑ NMSE↓ SSIM↑ PSNR↑ NMSE↓ SSIM↑ PSNR↑ NMSE↓ SSIM↑

SwinUNETR 32.815 0.092 0.941 31.655 0.202 0.912 24.650 0.361 0.857 27.593 0.202 0.883
Std. 0.968 0.043 0.049 1.062 0.067 0.052 1.008 0.069 0.077 1.144 0.072 0.050

MS-SPADE 29.001 0.055 0.942 26.119 0.078 0.912 25.818 0.103 0.904 24.842 0.113 0.859
Std. 0.643 0.025 0.022 0.816 0.022 0.015 0.857 0.030 0.014 0.728 0.034 0.019

Ours 43.472 0.003 0.996 34.547 0.045 0.955 30.756 0.065 0.944 31.693 0.049 0.937

T1

Std. 2.495 0.004 0.011 1.956 0.030 0.018 1.950 0.034 0.031 2.287 0.024 0.019
SwinUNETR 32.456 0.100 0.929 33.001 0.156 0.926 25.125 0.366 0.859 27.699 0.211 0.882

Std. 1.018 0.044 0.048 0.889 0.055 0.051 0.964 0.071 0.074 1.129 0.071 0.049
MS-SPADE 26.228 0.076 0.922 28.759 0.060 0.937 25.990 0.092 0.907 25.204 0.092 0.881

Std. 0.794 0.027 0.033 0.885 0.019 0.015 0.859 0.032 0.908 0.811 0.050 0.037
Ours 34.077 0.020 0.962 46.663 0.003 0.996 30.775 0.063 0.942 32.224 0.046 0.941

T1ce

Std. 2.484 0.012 0.017 3.240 0.004 0.008 1.812 0.030 0.028 2.518 0.029 0.025
SwinUNETR 30.102 0.171 0.896 30.354 0.283 0.883 26.831 0.268 0.887 27.234 0.242 0.872

Std. 1.405 0.056 0.050 1.249 0.086 0.054 1.144 0.054 0.075 1.154 0.073 0.051
MS-SPADE 25.422 0.085 0.908 25.234 0.087 0.895 29.230 0.048 0.942 25.074 0.098 0.867

Std. 0.852 0.026 0.020 1.152 0.034 0.025 0.720 0.018 0.915 1.085 0.021 0.018
Ours 32.646 0.028 0.955 33.857 0.051 0.949 43.653 0.006 0.991 32.224 0.046 0.941

T2

Std. 2.391 0.028 0.028 1.925 0.040 0.027 3.467 0.024 0.038 2.518 0.029 0.025
SwinUNETR 31.371 0.135 0.916 31.285 0.240 0.905 25.579 0.338 0.867 29.092 0.148 0.923

Std. 1.198 0.051 0.054 1.161 0.077 0.053 0.956 0.064 0.073 0.974 0.055 0.049
MS-SPADE 25.186 0.090 0.905 25.899 0.094 0.906 26.146 0.086 0.913 28.608 0.058 0.938

Std. 0.759 0.028 0.048 1.039 0.025 0.027 0.636 0.028 0.944 0.769 0.025 0.028
Ours 32.752 0.026 0.951 33.471 0.055 0.944 30.571 0.068 0.940 43.624 0.004 0.995

Flair

Std. 2.399 0.020 0.022 1.634 0.035 0.021 1.951 0.035 0.034 2.441 0.008 0.013

Table 10. Modality transfer results of MRI on BRATS23: The averaged results with standard derivations of metrics between all modali-
ties.

Missing Num =3 =2 =1 =0
flair
T1

T1ceModality

T2
SPA 65.86 65.27 78.26 66.4 72.99 83.23 70.66 81.25 70.66 80.63 83.22 73.89 83.36 82.05 83.4

M3AE 69.4 65.45 79.12 71.84 79.9 70.45 82.79 81.17 71.62 73.35 81.78 82.42 73.31 81.61 82.22
mmFormer 67.8 77.32 64.56 64.08 81.51 79.43 69.14 70.63 68.6 80.75 81.75 70.92 81.74 81.55 82.23

RFNET 64.03 74.53 58.63 61.95 79.2 77.45 69.25 67.48 67.98 78.85 80.15 70.75 79.4 80.15 80.29
M2F 65.79 63.29 77.31 63.64 70.38 79.93 68.01 79.62 67.68 79.37 80.65 69.73 80.01 79.53 80.34

Tumour Core

Ours 75.83 71.2 75.29 75.71 80.66 83.6 79.23 74.83 79.51 79.52 83.92 82.78 86.65 81.22 86.72
SPA 39.85 41.39 70.43 41.72 45.99 73.07 45.25 72.87 45.25 72.59 73.52 47.56 73.01 73.55 73.65

M3AE 37 38.41 75.8 44.22 78.09 45.2 79.36 78.16 41.71 48.12 79.14 80.06 47.63 79.31 79.91
mmFormer 40.08 72.19 38.89 37.23 73.11 73.06 40.64 42.27 43.65 75.56 43.34 81.74 73.36 75.31 73.4

RFNET 38.69 69.22 30.89 33.56 71.4 70.9 38.53 41.91 40.9 69.51 71.61 43.37 71.17 74.2 73.79
M2F 37.99 37.79 71.74 39.28 43.37 74.66 45.42 73.48 43.5 73.48 73.56 45.93 73.15 74.03 75.26

Enhancing tumour

Ours 67.45 54.83 70.86 47.63 69.38 52.91 70.1 59.45 67.44 63.91 70.79 57.78 69.42 59.76 70.64
SPA 85.77 72.69 71.95 80.4 87.82 87.97 88.27 75.57 88.27 81.8 88.3 88.78 89.06 82.87 89.27

M3AE 87.78 74.69 74.91 84.43 76.09 84.48 89.63 84.4 88.64 88.91 84.04 89.29 88.58 88.45 88.26
mmFormer 84.09 72.85 73.37 85.6 85.97 76.93 87.09 86.09 87.55 87.94 88.36 88.16 88.74 85.96 89.03

RFNET 80.52 67.06 68.42 82.96 82.57 71.97 85.82 83.25 86 84.94 86.06 86.53 86.34 83.61 86.82
M2F 85.72 72.48 71.78 82.53 87.73 87.66 84.35 76.03 87.69 84.27 88.17 88.22 88.47 84.32 88.72

Whole tumour

Ours 89.23 81.73 82.26 87.45 89.74 89.03 88.00 81.92 89.72 86.27 89.12 90.5 91.25 87.1 91.19

Table 11. Missing modality segmentation results of MRI on BRATS18: Num denotes the number of missing modalities for different
settings. The used modalities are highlighted with gray boxes and the missing ones remain as blank. The results of each setting are
presented accordingly.
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Figure 10. Generated images of our proposed method: slices across ventricles.
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Figure 11. Generated images of our proposed method: slices across cerebral sulcus.
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Figure 12. Generated images of our proposed method: slices across the cerebellar hemisphere. Our method can generate defined cerebellar
folia.
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