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Figure 7. Presentation of different description texts.

6. Generated Text Description

In Sec. 3.3, we generate description texts for different tis-

sue categories by considering their appearance attributes us-

ing a large language model, rather than relying on generic

prompts like “a photo of {}”. Specifically, we use the fol-

lowing prompts: “Describe {} in the histopathology image
in detail, including features such as color, shape.” / “De-
scribe {} in the natural image in detail, including features
such as color, shape.” We list the descriptions for each tis-

sue category in TNBC and HPBC datasets as follows:

• “background” refers to the overall appearance of the tis-

sue surrounding specific features of interest. It may ap-

pear as a homogeneous field of pale pink or blue.

• “tumor” typically appears as irregularly shaped clusters

of cells with varying sizes and colors, often exhibiting hy-

perchromatic nuclei and increased cellular density com-

pared to the surrounding tissue.

• “stroma” presents as a network of thin, elongated fibers or

cells that can be pink or pale in color, providing structural

support to the tissue.

• “lymphocytic infiltrate” manifests as small, round, dark-

staining lymphocytes scattered throughout the tissue, in-

dicating an immune response with clusters of these cells

forming lymphoid aggregates.

• “necrosis or debris” is characterized by areas of amor-

phous, pink-staining material or cellular remnants, often

lacking cellular details.

• “fat” presents as clear, vacuolated spaces with a white or

light yellow appearance, indicating the presence of adi-

pose tissue.

• “plasma cells” are typically round cells with eccentric nu-

clei and a clear perinuclear halo, often indicating an im-

mune response.

Additionally, the detailed descriptions for each category

in the natural image dataset (Pascal VOC 2012) are pro-

vided below:

• “aeroplane” typically appears as a flying aircraft with

wings and a fuselage, often featuring distinct shapes and

colors against the sky or clouds.

• “bicycle” is recognizable by its two wheels, frame, han-

dlebars, and pedals, commonly seen on roads or in out-

door settings.

• “bird” is characterized by its feathered body, wings, beak,

and often seen perched or in flight.

• “boat” refers to watercraft with a hull for sailing on water,

varying in size and design.

• “bottle” is a container typically made of glass or plastic,

often used for storing liquids.

• “bus” is a large vehicle designed for transporting passen-

gers, commonly seen on roads in urban areas.

• “car” is a motor vehicle with four wheels used for trans-

portation on roads, varying in make and model.

• “cat” is a domesticated feline animal with whiskers, fur,

and often seen lounging or moving about.

• “chair” is a piece of furniture designed for sitting, featur-

ing a seat and back support.

• “cow” is a domesticated bovine animal with horns and

distinctive black and white markings.

• “table” is a piece of furniture with a flat top supported by

legs, commonly used for various activities.

• “dog” is a domesticated canine animal known for its loy-

alty and varied breeds.

• “horse” is a large mammal with hooves and a mane, often

used for riding or pulling loads.

• “motorbike” is a two-wheeled vehicle powered by a mo-

tor, commonly used for transportation.

• “person” refers to a human individual, typically seen en-

gaged in various activities.

• “pottedplant” is a plant cultivated in a pot or container,

often found indoors or in gardens.

• “sheep” is a domesticated ruminant animal with woolly

fleece.

• “sofa” is a type of seating furniture designed for relax-

ation, often found in living rooms.

• “train” is a connected series of railway vehicles for trans-

porting passengers or goods.

• “tvmonitor” is a screen for displaying visual content,

commonly found in homes or public spaces.



Table 5. Comparison of ProZS with previous methods under the transductive setting on TNBC. ST: self-training, w2v: word2vec, ft:

fasttext. pAcc: pixel-wise classification accuracy. mIoU(S): seen mIoU. mIoU(U): unseen mIoU. hIoU: harmonic mIoU.

1 unseen 2 unseen 3 unseen
Method Text Encoder

pAcc mIoU(S) mIoU(U) hIoU pAcc mIoU(S) mIoU(U) hIoU pAcc mIoU(S) mIoU(U) hIoU

SPNet+ST [39] ft, w2v 59.9 34.2 30.9 32.5 60.3 41.4 24.5 30.8 62.1 41.5 25.1 31.3

ZS5 [5] w2v 60.2 36.4 33.9 35.1 59.3 40.6 29.5 34.2 62.3 40.3 29.2 33.9

CaGNet+ST [10] w2v 67.8 41.1 39.6 40.3 66.5 47.7 29.8 36.7 67.5 48.5 29.8 36.9

MaskCLIP+ [46] PLIP 74.7 53.7 49.9 51.7 72.8 55.5 31.4 40.1 73.4 55.8 35.6 43.5

ZegCLIP+ST [47] PLIP 74.9 51.1 50.3 50.7 74.1 55.1 31.8 40.3 73.5 56.3 35.7 43.7

TagCLIP+ST [20] PLIP 76.9 53.3 51.1 52.2 74.3 57.8 32.8 41.9 74.1 56.6 35.0 43.3

ProZS+ST (ours) PLIP 79.4 59.8 53.7 56.6 75.8 59.4 34.5 43.6 74.2 56.9 36.7 44.6
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Figure 8. Comparison of ProZS with previous methods on Pascal VOC 2012.

Table 6. Comparison of ProZS with previous methods under the

transductive setting on HPBC. ST: self-training, w2v: word2vec,

ft: fasttext. pAcc: pixel-wise classification accuracy. mIoU(S):

seen mIoU. mIoU(U): unseen mIoU. hIoU: harmonic mIoU.

Method
Text

Encoder
pAcc mIoU(S) mIoU(U) hIoU

SPNet+ST [39] ft, w2v 66.5 58.5 22.1 32.1

ZS5 [5] w2v 68.6 56.7 24.6 34.3

CaGNet+ST [10] w2v 70.5 59.0 30.8 40.5

MaskCLIP+ [46] PLIP 73.4 61.7 33.3 43.3

ZegCLIP+ST [47] PLIP 72.9 61.8 35.6 45.2

TagCLIP+ST [20] PLIP 74.8 62.2 36.9 46.3

ProZS+ST (ours) PLIP 75.5 62.6 39.3 48.3

7. Experimental Setting

7.1. Evaluation Metric

In Sec. 4.2, we introduce harmonic mean IoU (hIoU) as the

evaluation metric to evaluate the tissue segmentation results

among different methods. We list the definition of harmonic

mean IoU (hIoU) as follows:

hIoU =
2×mIoU(S)×mIoU(U)

mIoU(S) + mIoU(U)
, (12)

where mIoU(S) and mIoU(U) represent mIoU of seen

classes and unseen classes, respectively.

7.2. Comparison Method
In Sec. 4.2 and Sec. 4.6, we compare our AcZeroTS and

ProZS with previous methods, the detailed definition are

provided below.

7.2.1. Comparison Methods with AcZeroTS
(1) Random: Randomly select samples for annotation.

(2) Entropy [12]: Select samples based on the model entropy.

(3) Coreset [31]: Select samples by the query criteria of rep-

resentativeness.

(4) DEAL [41]: A difficulty-aware active learning network

for semantic segmentation of images.

(5) MADA [27]: Select representative and complimentary

samples from the unlabeled pool for annotation.

(6) RIPU [40]: Select samples based on the region impurity

for domain adaptive semantic segmentation.

(7) S4AL [30]: Query samples by considering semi-

supervision based pseudo labels.

(8) PBAL [28] A prototype-guided pseudo-label generating

approach that leverages the relationships between source

prototypes and target features for sample querying.

7.2.2. Comparison Methods with ProZS
(1) SPNet [39]: A zero-shot semantic segmentation method

using semantic projection network.

(2) ZS3 [5]: An architecture combining rich text and image

embeddings for zero-shot segmentation.

(3) CaGNet [10]: A context-aware feature generation method

for zero-shot segmentation.



Table 7. Ablation study of different category descriptions. Bri. Des.: Brief Description, Com. Des.: Comprehensive Description.

Description

Text

TNBC HPBC

1 unseen 2 unseen 3 unseen 1 unseen

pAcc mIoU(S) mIoU(U) hIoU pAcc mIoU(S) mIoU(U) hIoU pAcc mIoU(S) mIoU(U) hIoU pAcc mIoU(S) mIoU(U) hIoU

Class Label 74.8 57.5 45.5 50.8 73.4 58.4 25.7 35.7 72.4 56.2 27.0 36.5 72.4 62.0 31.7 42.0

Bri. Des. 75.9 57.7 50.2 53.7 74.4 58.6 31.4 40.9 72.8 56.2 29.7 38.9 73.2 61.9 33.9 43.8

Com. Des. 76.5 58.7 52.8 55.6 74.5 58.8 33.7 42.8 73.1 56.9 30.5 39.7 74.2 62.1 35.1 44.9

Table 8. Ablation study of category-wise pixel-level contrastive loss. w/o CPC: without category-wise pixel-level contrastive loss.

Method

TNBC HPBC

1 unseen 2 unseen 3 unseen 1 unseen

pAcc mIoU(S) mIoU(U) hIoU pAcc mIoU(S) mIoU(U) hIoU pAcc mIoU(S) mIoU(U) hIoU pAcc mIoU(S) mIoU(U) hIoU

w/o CPC 76.2 57.6 51.1 54.2 74.5 58.7 32.8 42.1 72.9 56.6 30.0 39.2 74.2 61.9 34.7 44.5

ProZS (ours) 76.5 58.7 52.8 55.6 74.5 58.8 33.7 42.8 73.1 56.9 30.5 39.7 74.2 62.1 35.1 44.9

(4) SIGN [7]: A spatial-information guided generative net-

work for zero-shot semantic segmentation.

(5) Joint [3]:Exploiting the joint embedding of image and text

for generalized semantic segmentation.

(6) ZegFormer [8]: A simple but effective zero-shot seman-

tic segmentation model based on the decoupling formula-

tion.

(7) ZegCLIP [47]: A efficient one-stage straightforward

zero-shot semantic segmentation method based on the

CLIP.

(8) SaLIP [1]: A method integrating SAM and CLIP into a

unified framework for medical image segmentation.

(9) USE [36]: An open-vocabulary image segmentation task

involves partitioning images into semantically meaning-

ful segments and classifying them with flexible text-

defined categories.

(10) TagCLIP [20]: A trusty-aware guided CLIP model for

zero-shot segmentation.

(11) MaskCLIP+ [46]:Leverages CLIP to provide pseudo la-

bels for unlabeled pixels, which can be applied to more

segmentation-tailored architectures for zero-shot segmen-

tation.

(12) SAM [19]: A vision foundation model for segmenting

anything.

(13) MedSAM [23]: A vision foundation model for segment-

ing medical images.

8. Additional Experiments
8.1. Effectiveness of ProZS
8.1.1. Effectiveness on Natural Dataset
To further validate the effectiveness of our method, we ex-

tend ProZS for natural image segmentation on the Pascal

VOC 2012, and compare it with SoTA methods by replac-

ing PLIP encoders with CLIP’s. We present the mIoU on

both seen and unseen classes as well as hIoU in Fig. 8, and

the results further demonstrate the superiority of ProZS in

tackling ZSS tasks.

Table 9. Comparison of ProZS with previous methods on fully

supervised task.

TNBC HPBC
Method

pAcc mIoU(S) mIoU(U) pAcc mIoU(S) mIoU(U)

TagCLIP [20] 79.2 54.1 - 80.1 55.9 -

ProZS (ours) 81.1 59.3 - 80.9 57.2 -

Table 10. Cross-dataset segmentation results from HPBC to

TNBC.

Method pAcc mIoU

USE [36] 58.5 29.8

TagCLIP [20] 59.4 30.9

ProZS (ours) 62.1 (+2.7) 33.5 (+2.6)

8.1.2. Transductive Task
Generally, GZSS can be divided into two different settings:

inductive and transductive. Inductive setting only contains

information from seen classes during training. For the trans-

ductive setting, partial information (e.g., class name and vi-

sion feature) from unseen classes can be accessed in the

training process except for the ground truth masks. We eval-

uate our method under the inductive setting in Sec. 4, and

also assess ProZS under the transductive setting on TNBC

(Tab. 5) and HPBC (Tab. 6). In the transductive setting, we

train ProZS on seen classes for first 50% epochs and then

utilize self-training to generate pseudo labels in the remain-

ing training processes. Our results further demonstrate that

ProZS can achieve superior segmentation performance for

the transductive task. As shown in Tab. 5 and Tab. 6, ProZS

not only showcases impressive results on unseen classes but

also maintains excellent performance on seen categories for

tissue segmentation. More specifically, ProZS outperforms



Table 11. Effects of different regularization parameters λ.

TNBC HPBC

1 unseen 2 unseen 3 unseen 1 unseenλ

pAcc mIoU(S) mIoU(U) hIoU pAcc mIoU(S) mIoU(U) hIoU pAcc mIoU(S) mIoU(U) hIoU pAcc mIoU(S) mIoU(U) hIoU

0.1 76.2 57.8 52.5 55.0 74.3 58.4 33.0 42.2 73.1 56.1 30.0 39.1 74.2 61.7 35.0 44.7

0.01 76.5 58.7 52.8 55.6 74.5 58.8 33.7 42.8 73.1 56.9 30.5 39.7 74.2 62.1 35.1 44.9
0.001 76.4 57.6 44.8 50.4 74.5 58.0 30.6 40.1 72.9 56.3 29.7 38.9 74.1 61.9 34.4 44.2
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Figure 9. Ablation study of different vision-language models (VLMs) on TNBC and HPBC.

current SoTA by 2.6% on TNBC and 2.4% on HPBC in

mIoU(U).

8.1.3. Fully Supervised Task
We also provide the fully supervised learning results in

Tab. 9, which demonstrates that ProZS improves the upper

bound of ZSS results (mIoU) by 5.2% on TNBC and 1.3%

on HPBC.

8.1.4. Cross-Dataset Task
To further investigate the cross-domain generalization abil-

ity of ProZS, we conduct extra experiments that we train

the model on the seen classes of HPBC and evaluate its

performance on the TNBC. We compare our method with

TagCLIP [20] and USE [36] in Tab. 10. The result shows

that ProZS outperforms its competitors by 2.7% in pAcc

and 2.6% in mIoU, highlighting the satisfied generalization

ability of our method across different datasets.

8.2. Ablation of ProZS

8.2.1. Effects of Different Text Descriptions

In ProZS, we design text prompts to describe tissue cate-

gories using the LLM. Here, we discuss the effects of ap-

plying different prompts and evaluate their performance for

tissue segmentation. Specifically, we divide the decription

texts using different prompts into three categories (class

name (without prompts), brief description, and comprehen-



sive description) shown in Fig. 7. The brief description

uses “Describe {} in the histopathology image in detail.” as

prompts. For the comprehensive description, we ask LLM

to provide more detailed attributes of tissue categories, like

“Describe {} in the histopathology image in detail, includ-
ing features such as color, shape.”. All generated compre-

hensive descriptions can be found in Sec. 6. From Tab. 7, we

observe that the utilization of text descriptions yields signif-

icantly better results compared to solely using class labels.

Additionally, the comprehensive description provides more

detailed and informative cues to the model, allowing it to

better understand the characteristics and visual appearance

of the target category.

8.2.2. Effects of Category-wise Pixel-level Contrastive
Loss

We further discuss the effects of our proposed category-

wise pixel-level contrastive (CPC) loss of ProZS in Tab. 8.

It can be observed that the CPC loss helps to enhance the

segmentation performance on both seen and unseen classes,

which demonstrates its advantages in transferring the zero-

shot ability of vision-language model from image-level to

pixel-level.

8.2.3. Effects of Different Vision-language Models
In ProZS, we utilize the vision-language model (VLM)

PLIP to encode both image and text. To further investigate

the impact of different VLMs, we conduct experiments us-

ing CONCH [21], as shown in Fig. 9. The results indicate

that while both PLIP and CONCH exhibit comparable fea-

ture extraction and representation capabilities for ZSS task,

PLIP demonstrates a slight advantage.

8.3. Parametric Analysis
8.3.1. Discussion on the Regularization Parameter λ

In Eq. (5), we use a regularization parameter λ = 0.01 to

weight the contributions of the segmentation loss Lseg and

the category-wise pixel-level contrastive loss Lcpc for the

zero-shot segmentation task. Here, we further discuss the

effects of λ in the range of {0.1, 0.01, 0.001}, and the re-

sults are shown in Tab. 11. As can be seen from Tab. 11, all

indexes fluctuate in a small range on the seen classes. which

shows that our method is very robust to the regularization

parameter λ for the segmentation tasks on seen tasks. On

the other hand, we can observe that the segmentation results

on unseen tasks are largely affected with different values of

λ, which implies that the selection of λ is very important

for segmenting unseen class tissues, and we can derive the

best segmentation results if λ = 0.01.

8.4. Learnable Parameters and Inference Time
We compute the number of learnable parameters and infer-

ence time to further evaluate the model’s efficiency. we train

ProZS on a single NVIDIA 4090 GPU with 24GB mem-

ory, with a total learnable parameter count of 8.17M. The

inference time for a single image is approximately 0.009

seconds.


