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Supplementary Material

6. Preliminary

6.1. Problem Formulation

In a collaborative perception scenario involving IV agents,
each agent i owns unique observations {X;} Y ; and the per-
ception supervision {);} ¥ ;. The objective is to maximize
the collective perception performance of all agents while
ensuring that the transmission cost remains within a spec-
ified limit G. The process can be formulated as follows:
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where g(-,-) represents the perception evaluation metric,
1(+) is the collaborative perception model with trainable pa-
rameter 6, and M,;_, ; denotes the message transmitted from
the ith agent to the jth agent.

6.2. Collaboration Stages

Collaborative perception in multi-agent systems involves
several key stages to ensure comprehensive and accurate
environmental understanding. Here, we outline the main
stages of our proposed framework and their respective roles.
V2X Metadata Sharing: The collaborative process begins
with the sharing of meta information. Each agent shares
metadata, including 6 degrees of freedom (6DoF) pose, ex-
trinsic parameters, velocity, and agent type, which covers
both infrastructure and vehicle type. One vehicle is desig-
nated as the ego agent. This shared meta information lays
the foundation for subsequent feature extraction and fusion
processes.

Feature Extraction: Following metadata exchange, each
agent extracts relevant features within its own view. We use
the efficient PointPillar [11] for LIDAR point cloud feature
extraction due to its minimal inference time and optimized
memory utilization [32]. PointPillar transforms the sparse
point cloud into dense pillar tensors, which are then pro-
cessed to obtain rich semantic BEV (Bird’s Eye View) fea-
tures F} € REXWXC gt timestamp ¢ for agent 4.

Feature Communication: After extracting the features,
agents exchange these features. Given the data-intensive
nature of PointPillar features, reducing transmission band-
width is crucial. Limited communication bandwidth in
practical scenarios makes efficient feature communication a

core challenge. To address this, We introduce a spatiotem-
poral perspective where only dynamic object observations
are transmitted, while static object observations are reused,
reducing communication load. The ego agent combines se-
lected tokens with historical features from the memory bank
to form a reconstructed feature Rf in REXWXC wwhich then
updates the memory bank for future use.

Feature Fusion: Upon receiving features from other
agents, the ego agent performs feature fusion. The goal is to
integrate its own information with that received from other
agents to derive the most comprehensive perceptual fea-
tures. We employ a multi-agent fusion module that merges
reconstructed features with ego features, producing a col-
laborative feature B for the current timestamp in the space
RH xWxC .

Detection Head In the final stage, the integrated percep-
tual features are fed into the detection head to predict the
final perception results. This process involves two 1 x 1
convolution layers: one for box regression, outputting po-
sition, dimensions, and yaw angle of prediction boxes, and
another for classification, generating a confidence score in-
dicating the likelihood of each box containing an object or
being background. The employed loss functions align with
those of PointPillar [11], including a smooth L1 loss [24]
for regression and focal loss [16] for classification.

7. Spatiotemporal Transmission

As shown in Figure 8, the STT module in our CoST frame-
work reduces communication bandwidth by transmitting
only dynamic object features instead of the full BEV map.
Conventional methods reduce feature channels [31, 34], but
they neglect the temporal redundancy where static informa-
tion remains unchanged over time. While Where2comm [§]
transmits sparse tokens from key object regions, it does not
leverage the fact that static regions can be reconstructed
from historical data. In our approach, we focus on dy-
namic features that change over time, thereby avoiding the
re-transmission of redundant static information while ensur-
ing a complete scene representation.

Robustness to Communication Loss. To further eval-
uate the robustness of our framework under lossy commu-
nication, we simulate perturbations by randomly dropping a
portion of transmitted feature tokens. As shown in Figure 9,
CoST exhibits stronger resilience compared to baselines,
with significantly smaller degradation in detection accuracy.
This robustness stems from our use of temporal memory to
mitigate the impact of missing data during transmission.
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Figure 8. Our spatiotemporal transmission filters tokens based on saliency and motion, similar to selective attention in perception. These
tokens are subsequently merged with historical features to reconstruct a comprehensive feature map.
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Figure 9. Performance under randomly dropped transmitted fea-
tures on V2V4Real. CoST shows better robustness with minimal
accuracy drop.

8. Training Details

All detection models utilize PointPillar [11] to extract the
BEV features from the point cloud and the feature channel
C is set as 256. The models are trained over 60 epochs with
a batch size of 4 per GPU (Tesla V100), a learning rate set
at 0.001, and incorporating learning rate decay using a co-
sine annealing strategy [21]. Regarding the USTF module,
during training, we use data samples of three consecutive
frames with a time interval 7 set to 2 frames to obtain more
context information. During testing, we process the frames
sequentially from the first frame to the last. As for the
STT compression module, it undergoes an additional two-
stage training process with the other pre-trained modules
frozen. To ensure consistency in evaluation, standard set-
tings are followed on the V2V4Real [34] dataset, including
typical data augmentations for point cloud data. Conversely,
no data augmentations are applied to the V2XSet [31] and
DAIR-V2X [37] datasets. The model optimization is per-
formed using AdamW [10] with a weight decay of 1 x 102
to fine-tune the models.

9. Datasets

V2V4Real: V2VReal is a large-scale real-world V2V
dataset collected by two vehicles with multi-modal sensors
navigating through diverse scenarios. Covering a driving
area of 410 km, V2V4Real includes 20K LiDAR frames,
240K annotated 3D bounding boxes across 5 classes, and
HDMaps that encompass all driving routes.

V2XSet: V2XSet integrates V2X collaboration with re-
alistic noise simulation. The dataset comprises a total of
11, 447 frames from CARLA [6] and OpenCDA [29], split
into training, validation, and test sets with 6,694, 1,920,
and 2,833 frames, respectively. It includes five types of
roadways: straight segments, curvy segments, midblocks,
entrance ramps, and intersections. Each scene features be-
tween two to seven intelligent agents for collaborative per-
ception.

DAIR-V2X: DAIR-V2X is a substantial real-world V2I
dataset without V2V collaboration. It comprises three parts:
DAIR-V2X-C, DAIR-V2X-I, and DAIR-V2XV. Notably,
DAIR-V2X-C contains sensor data from vehicles and in-
frastructure, with 38, 845 frames each from cameras and Li-
DAR, and around 464,000 3D bounding boxes categorized
into 10 distinct classes.

10. Qualitative Analysis

Figure 10 illustrates the detection visualization for OPV2YV,
CoBEVT, V2X-ViT, and CoTT across sparse and dense
scenes in V2V4Real. Our model produces precise bound-
ing boxes that closely align with the actual ground truth,
contrasting with competing methods that exhibit notable
discrepancies. Specifically, in sparse scenes with fewer
than three ground truths, observed in the initial and sec-
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Figure 10. Qualitative comparison between sparse and dense scenes. The green and red 3D bounding boxes represent the ground truth and
predictions, respectively. Our approach demonstrates superior accuracy in detection results.

ond rows, alternative methods frequently overlook distant
ground truth boxes and may produce false positives. Con-
versely, our approach delivers accurate predictions in such
scenarios. Moreover, our methodology achieves the most
thorough detection outcomes in dense environments repre-
sented in the last two rows of Figure 10, demonstrating its
proficiency in effectively leveraging historical data.

We visualize the ground truth objects/boxes in adjacent
frames in Figure 11. Only the six cars positioned in the cen-
ter of the frame have moved between frame 25 and frame
30, while the state of the other vehicles has remained un-
changed. Besides, the temporal context benefits the detec-
tion result and reduces the omission of detection results, as
shown in the bottom of Figure 1.

11. Robustness Analysis

Time Delay poses a notable challenge in real-world V2X
communications, leading to a lack of synchronization be-
tween the ego vehicle’s functionalities and information re-
ceived from collaborative agents. It is essential for collabo-
rative perception techniques to effectively handle such time
delays. In this research, we investigate the resilience of our
model towards time delays. We enhanced our approach by
utilizing a model originally trained in an ideal environment,
introducing latencies uniformly distributed between 0 to
500 milliseconds. To assess our model, we conducted tests
with fixed latencies. In scenarios featuring a fixed delay (as
depicted in Figure 6 in the main text), a consistent latency
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Figure 11. Visualization for object states on adjacent frames and
comparing detection with single frame and temporal context.

of up to 500 milliseconds was added to the feature trans-
mission from each agent to the ego vehicle. Our findings
reveal that our method demonstrates substantial resilience
to latency within V2V4Real. In contrast, both early fusion
and late fusion methodologies exhibit a notable decline in
performance when confronted with latency issues, indicat-



ing a lack of robustness. Consistently, our method surpasses
other techniques in accuracy across various time delay con-
figurations. Even in settings with noisy 100 milliseconds
time delays, our method achieves an accuracy of 66.03%
AP@(.7, outperforming other cooperative approaches un-
der optimal conditions.

Pose Error is a significant issue in collaborative percep-
tion, encompassing both heading error and localization er-
ror. In our experiments, we selected the V2XSet dataset
for validation because the real-world database V2V4Real
already contains inherent pose error noise, making the ef-
fects of manually added noise less discernible. To mimic
real-world inaccuracies in our experiments, we introduced
localization noise without modifying the models’ settings.
This noise follows a Gaussian Distribution with a mean of
zero and an adjustable standard deviation, emphasizing the
importance of robustness in collaborative perception mod-
els against localization inaccuracies. The results from the
V2XSet dataset shown in Figure 6 in the main text indicate
that heading errors have a more significant impact on per-
formance compared to positional errors. It is evident that
introducing localization errors of 0.1 and 0.2 has minimal
impact on the accuracy of our method. Notably, our method
exhibits strong resilience to localization and heading errors,
surpassing other methods notably in terms of AP@0.5.



