
Supplementary Material for FinMMR

Contents

A Error Analysis 2

B Augmentation Methods 2

B.1 Visual Filtering for Reasoning . 2

B.2 Knowledge Augmentation . 2

B.3 Visual Parser with Reasoner . 2

C Prompt Templates 3

C.1 Chain-of-Thought (CoT) . 3

C.2 Program-of-Thought (PoT) . 3

C.3 Retrieval-Augmented Generation (RAG) . 3

C.4 Function Relevance Judgment . 3

C.5 Visual Relevance Judgment . 3

D Experimental Details 3

D.1 Model Specifications . 3

D.2 Validation Set Results . 3

Back to Table of Contents 1 Back to the First Page

A Error Analysis

We exhibit representative examples for the three primary error categories: Visual Perception Error
(Fig. 2), Knowledge Reasoning Error with two cases (Fig. 3, Fig. 4), and Numerical Computation
Error (Fig. 5). These errors were observed in the outputs of Claude 3.7 Sonnet with 64K extended
thinking in PoT setting.

These error cases highlight critical limitations in current multimodal large language models (MLLMs).
Visual Perception errors primarily stem from the misinterpretation of complex visual data (such as
charts) or failures to accurately extract numerical information from tables. Knowledge Reasoning
errors result from either incorrect factual knowledge stored in the model or flawed logical reasoning
processes. Numerical Computation errors occur due to inaccuracies in the model’s internal compu-
tation mechanisms during reasoning. Consequently, FinMMR underscores the need for improvements
in three core capabilities: intricate visual perception, specialized knowledge reasoning, and accurate
numerical computation.

B Augmentation Methods

B.1 Visual Filtering for Reasoning

Fig. 6 illustrates a representative example demonstrating our proposed two-stage filtering-reasoning
pipeline applied to a multimodal numerical reasoning task. Specifically, the task requires calculating
fifth-year sales revenue for the respiratory category, comparing it with third-year data, and computing
the growth rate. Among the three input images, Images 1 and 2 contain task-relevant tables, while
Image 3 is an irrelevant distractor. Without visual filtering, although the model correctly avoided
extracting numerical information from the irrelevant image, it misinterpreted values from relevant
tables, resulting in a significant deviation from the reference answer. When implementing our pipeline,
the MLLM first assesses image relevance, correctly identifying Images 1 and 2 as [USEFUL] and
Image 3 as [USELESS], thus eliminating distractors from downstream reasoning.

B.2 Knowledge Augmentation

Fig. 7 presents a representative financial multimodal reasoning task, demonstrating the efficacy
of our domain knowledge augmentation method. Specifically, the task requires calculating the
impact on net income from switching inventory accounting methods from LIFO to FIFO, based on
a provided financial table. In the baseline without augmentation (“Original Output”), the model
incorrectly treated the entire 2014 LIFO reserve as income, violating U.S. GAAP which stipulates
that only changes in LIFO reserve impact current-year net income. This caused significant income
overstatement. Conversely, with our augmentation approach (“Augmented Output”), the model
correctly computed the effect using the year-over-year change in LIFO reserve with proper
tax effect adjustment, achieving accurate income quantification. This case highlights the critical
importance of domain knowledge augmentation for MLLMs. Complementing this, Fig. 8 illustrates a
representative financial function retrieved from our library.

B.3 Visual Parser with Reasoner

Fig. 9 demonstrates our two-stage parsing-reasoning pipeline comprising a Visual Parser and a
Reasoner. The task requires calculating anticipated portfolio returns under two economic scenarios
using probability-weighted returns from a tabular image. We first instruct GPT-4o (as Visual Parser)
to convert tabular data into structured markdown format. This structured output then enables a
large reasoning model (LRM) to perform numerical reasoning. Compared to directly reasoning on
raw visual inputs, GPT-4o’s parsed data significantly enhances the downstream LRM’s accuracy,
underscoring the efficacy of model collaboration in multimodal reasoning.

Back to Table of Contents 2 Back to the First Page

C Prompt Templates

C.1 Chain-of-Thought (CoT)

The CoT prompt directs MLLMs to decompose complex reasoning tasks into sequential intermediate
steps. This approach enhances performance on mathematical, logical, and analytical problems by
requiring explicit articulation of each reasoning stage before final answer generation. See Fig. 10 for
the complete template.

C.2 Program-of-Thought (PoT)

The PoT prompt guides MLLMs to formulate solutions as executable code. By translating problems
into programs with variables, functions, and logical operations, this approach enables precise compu-
tation and transparent reasoning, particularly effective for quantitative tasks. The complete template
is provided in Fig. 11.

C.3 Retrieval-Augmented Generation (RAG)

The RAG prompt integrates retrieval of external knowledge with generative reasoning. This hybrid
approach enables MLLMs to supplement parametric knowledge with dynamically retrieved infor-
mation, enhancing answer accuracy for knowledge-intensive tasks. See Fig. 12 for implementation
details.

C.4 Function Relevance Judgment

This prompt evaluates the utility of retrieved financial functions for answering specific questions. It
assesses both relevance and reliability, permitting only qualified knowledge to inform downstream
reasoning. The complete template is available in Fig. 13.

C.5 Visual Relevance Judgment

This prompt assesses image relevance for financial problem-solving. It classifies each input image as
[USEFUL] or [USELESS], with uncertainty favoring retention to prevent critical information loss.
See Fig. 14 for details.

D Experimental Details

D.1 Model Specifications

Tab. 1 details the 15 MLLMs evaluated on FinMMR, covering models from 8 leading organizations.
Each entry includes the official model identifier to ensure full experimental reproducibility.

D.2 Validation Set Results

Tab. 2 presents the accuracy metrics of 12 MLLMs on the validation set of FinMMRacross three
difficulty tiers. Models are evaluated using both Chain-of-Thought (CoT) and Program-of-Thought
(PoT) prompting methods under standardized conditions.

Back to Table of Contents 3 Back to the First Page

Visual Perception Er ror

Knowledge Reasoning Er ror

Numer ical Computation Er ror

30%

38%

32%

Figure 1: Error Distribution: Claude 3.7 Sonnet on FinMMR

Back to Table of Contents 4 Back to the First Page

Question: What is the increase in the percentage of the total contract assets
proportion to the total accounts receivable from December 31, 2019 to June 30,
2020 in percentage? Rounded to 2 decimal places.

def solution():
 # Define variables name and value
 contract_assets_june_2020 = 1763
 total_accounts_receivable_june_2020 = 5058（×） 5058（×）—— 5658（√）
 contract_assets_dec_2019 = 1857
 total_accounts_receivable_dec_2019 = 6473

 # Calculate the proportion of contract assets to total accounts
receivable
 proportion_june_2020 = contract_assets_june_2020 /
total_accounts_receivable_june_2020
 proportion_dec_2019 = contract_assets_dec_2019 /
total_accounts_receivable_dec_2019

 # Compute the percentage increase in proportion
 percentage_increase = ((proportion_june_2020 - proportion_dec_2019)
/ proportion_dec_2019) * 100

 return round(percentage_increase, 2

Return answer rounded to 2 decimal places
)

Answer: 21.5

 Ground Truth: 2.47

Context: The timing of revenue recognition, billings and cash collections results in billed
accounts receivable, unbilled receivables (contract assets), and customer advances and deposits
(contract liabilities) on the consolidated balance sheets. In our Air Pollution Control Technology

segment, amounts are billed as work progresses in accordance with agreed-upon contractual
terms. Generally, billing occurs subsequent to revenue recognition, resulting in contract assets.
These assets are reported on the consolidated balance sheet on a contract-by-contract basis at the

end of each reporting period. At June 30, 2020 and December 31, 2019, contract assets were
approximately $1,763 and $1,857, respectively, and are included in accounts receivable on the
consolidated balance sheets.

Figure 2: Visual Perception Error Case

Back to Table of Contents 5 Back to the First Page

Question: For each of the following $1,000-parvalue bonds, assuming annual
interest payment and a 40% tax rate, calculate the after-tax cost to maturity
using the approximation formula. What is the after-tax cost to maturity for
Bond C? Answer as a percentage to two decimal places.

def solution():
 # Define bond parameters
 par_value = 1000 # Par value of the bond
 discount = -15 # Discount for Bond C ($15)
 life = 15 # Bond life in years
 coupon_rate = 0.12 # Coupon interest rate (12%)
 tax_rate = 0.40 # Tax rate (40%)
 underwriting_fee = 30 # Underwriting fee ($30)
 annual_interest = par_value * coupon_rate
 after_tax_interest = annual_interest * (1 - tax_rate)（×）
 net_proceeds = par_value + discount - underwriting_fee
 numerator = after_tax_interest + ((par_value - net_proceeds) / life)
（×）
 denominator = (par_value + net_proceeds) / 2
 after_tax_cost = (numerator / denominator) * 100 # Convert to
percentage
 return round(after_tax_cost, 2)

Error Analysis: The error occurred because the tax rate was applied prematurely to the interest
payment, while the amortized issuance cost was left untaxed, leading to an incorrect calculation.
The correct approach is to first compute the pre-tax cost and then apply the tax rate to the entire
cost to ensure consistency.

Ground Truth:
7.55

Figure 3: Knowledge Reasoning Error Case 1

Back to Table of Contents 6 Back to the First Page

Question: What percentage of the total leased locations are in Texas? Answer to
three decimal places.

def solution():
 # Define the number of locations in different states
 locations = {
 "California": 57,
 "Florida": 26,
 "Georgia": 22,
 "Texas": 19,
 "Minnesota, New York": 9,（×）
 "Illinois, Ohio, Maryland": 8,（×）
 "Pennsylvania": 7,
 "Other": 63
 }
 # Calculate the total number of locations
 total_locations = sum(locations.values())
 # Compute the percentage of locations in Texas
 texas_percentage = (locations["Texas"] / total_locations) * 100
 # Return the result rounded to 3 decimal places
 return round(texas_percentage, 3)

Error Analysis: The error reflects a model reasoning issue, where multiple distinct states are
incorrectly grouped as single entities—“Minnesota, New York” as one instead of two, and
“Illinois, Ohio, Maryland” as one instead of three. This misclassification can lead to flawed
inferences and inaccuracies in downstream analysis. In addition to the data shown in the image,
the context also specifies that the company leases approximately 81 locations outside the United
States. Taken together with the U.S.-based leased properties listed in the image, this brings the
total number of leased locations to 292.

Ground Truth: 6.507

Figure 4: Knowledge Reasoning Error Case 2

Back to Table of Contents 7 Back to the First Page

Question: On February 17, 2017, what was the company’s market capitalization
as reported on the NYSE? Answer to three decimal places.

Context: Part II, Item 5. Market for Registrant’s Common Equity, Related Stockholder Matters
and Issuer Purchases of Equity Securities. The following table presents the reported quarterly
high and low per share sale prices of our common stock on the NYSE for the years 2016 and
2015. On February 17, 2017, the closing price of our common stock was $108.11 per share as
reported on the NYSE. As of February 17, 2017, we had 427,195,037 outstanding shares of
common stock and 153 registered holders.

def calculate_market_cap():
 closing_price_per_share = 108.11
 outstanding_shares = 427_195_037
 market_capitalization = closing_price_per_share *
outstanding_shares
 market_cap_billions = round(market_capitalization /
1_000_000_000, 3)（×）
 return market_cap_billions
print(calculate_market_cap())

Error Analysis: The model arbitrarily converted the market capitalization into billions, despite
the absence of any such requirement in the problem statement. This reflects a misalignment
between the model’s assumptions and the explicit task constraints.

Ground Truth: 46184055450.078

Figure 5: Numerical Computation Error Case

Back to Table of Contents 8 Back to the First Page

Question: 请根据图中数据，计算呼吸在第五年的销售额，并将其与第三年
进行比较，计算增长率；请保留两位小数。
(Calculate the sales revenue of the “Respiratory” category in the fifth year based
on the data in the table. Then, compare it with the third year and calculate the
growth rate. Please round the result to two decimal places.)

 # Define variables name and value
 year_3_sales = 87.73
 year_5_sales = 150.01（×）

Original Output:
def solution():

 # Do math calculation to get the answer
 growth_rate = ((year_5_sales - year_3_sales) / year_3_sales)
* 100
 # return answer
 return round(growth_rate, 2)
 # Call the function and print the result
 print(solution())

 # Define variables name and value
 year_3_sales = 87.73
 year_5_sales = 120.01
 # Do math calculation to get the answe

Augmented Output:
def solution():

r
 growth_rate = ((year_5_sales - year_3_sales) / year_3_sales)
* 100
 answer = round(growth_rate, 2)
 # return answer
 return answer

Groud Truth: 36.79

USEFUL

USELESS

USEFUL

Image 1:

Image 2:

Image 3:

Figure 6: Example of Filtering-Reasoning Pipeline

Back to Table of Contents 9 Back to the First Page

Image

Question: Assuming the cash flow from financing activities according to U.S.
GAAP is: Answer to a single decimal place.

:

Original Output:
def solution():
 # Define variables name and value
 lifo_reserve_2014 = 82 # in thousands
 tax_rate = 0.30 # 30%

 # Do math calculation to get the answer
 income_increase_before_tax = lifo_reserve_2014（×）
 tax_on_increase = income_increase_before_tax * tax_rate
 income_increase_after_tax = income_increase_before_tax -
tax_on_increase

 # Return answer to one decimal place
 return round(income_increase_after_tax, 1)

Augmented Output:
def solution():
 # Define variables name and value
 lifo_reserve_current = 82 # LIFO reserve for 2014 (in
thousands)
 lifo_reserve_previous = 64 # LIFO reserve for 2013 (in
thousands)
 tax_rate = 0.30 # 30% corporate tax rate

 # Do math calculation to get the answer
 change_in_lifo_reserve = lifo_reserve_current -
lifo_reserve_previous
 pre_tax_income_increase = change_in_lifo_reserve
 additional_tax = pre_tax_income_increase * tax_rate
 net_income_increase = pre_tax_income_increase -
additional_tax
 answer = round(net_income_increase, 1)

 return answer

 Ground Truth: 45000.0

Error Analysis: The second implementation incorrectly assumes that the entire 2014 LIFO
reserve ($82k) should be released and added to net income, resulting in an overstatement. In
reality, only the change in LIFO reserve from 2013 to 2014 ($18k) impacts 2014 income when
switching to FIFO. The first implementation correctly uses this difference and accounts for taxes,
leading to an accurate calculation.

Figure 7: Example of Knowledge Augmentation

Back to Table of Contents 10 Back to the First Page

a new dataset of SEC filings and labeled quantities
(SEC-Num), and extraction-only subsets of TAT-
QA and ConvFinQA.

SEC-Num is a novel dataset for quantity ex-
traction from SEC filings. Recently, the SEC im-
plemented a machine-readable labeling scheme
for structuring data within human-readable doc-
uments.1 Under these rules, filers are required to
annotate quantities within reports with natural lan-
guage descriptions of each quantity reported. We
treat these descriptions as labels and define the
SEC-Num task as follows: given a document snip-
pet and a target label as input, the expected output
is the quantity span from the snippet corresponding
to the label. This open-vocabulary task general-
izes Loukas et al. (2022), who focus on the most
frequent labels and develop a classification task.
A snippet of the original SEC filing is shown in
Table 14 in the Appendix.

The data processing pipeline for SEC-Num be-
gins with 202 10-K and 10-Q filings from the SEC
EDGAR data portal. From these, we split each
document into pages, each of which may contain
multiple paragraphs and tables with a large num-
ber of quantities. For each unambiguous quantity
label, we create a datapoint (x, y) where x is a snip-
pet/label pair and y is the corresponding number
from the snippet for the given label. The resulting
dataset has 8,845 datapoints, which we split into
6,845 train and 2,000 test datapoints. Full statistics
of this data are available in Table 1.

TAT-QA Extract (E) and ConvFinQA Extract
(E) are subsets of questions from TAT-QA and Con-
vFinQA respectively, which can be answered using
a numeric span from the context text or tables. See
Table 1 for our dataset statistics.

3.3 Domain Knowledge
These tasks test the financial domain knowledge
of an AI system. Here, models must demonstrate
internal understanding of business and financial
terms, practices, and formulae.

FinKnow contains 877 multiple choice ques-
tions and answers collected from CFA practice ex-
ams and the business ethics, microeconomics, and
professional accounting exams from the MMLU
dataset (Hendrycks et al., 2021b). The CFA exam
questions have three potential choices, while the
questions from the MMLU dataset have four. We
exclude incomplete questions and questions that

1https://www.sec.gov/structureddata/
osd-inline-xbrl.html

Financial Function
def calc_net_return(init_investment: float ,

growth: float , fee_rate: float , inc_rate:
float , hurdle: float) -> float:
"""
Calculate the net return for an investor in
a hedge fund given various parameters.

Args:
initial_investment (float): The initial
amount invested in the hedge fund ...

Returns:
net_return (float): The net return for the
investor after fees , in millions.
"""
end_value = init_investment * (1 + growth)
fee = end_value * fee_rate
net_value = end_value - fee
hurdle_value = init_investment * (1 + hurdle

)
inc_fee = max(0, (net_value - hurdle_value)
* inc_rate)
net_return = end_value - (fee + inc_fee) -
init_investment
return round(net_return , 2)

Figure 5: Truncated example from FinancialModel.
The model is prompted with the function signature and
docstring and generates the code highlighted in cyan.

require numeric extraction or numerical reasoning.
In total, this dataset contains 418 CFA, 86 business
ethics, 224 microeconomics and 149 professional
accounting question-answer pairs. We evaluate the
models in a zero-shot setup. For each question,
we compute the log probability of each potential
answer and select the highest as the model’s choice.

FormulaEval is a novel code-completion task
designed to determine whether formulae for differ-
ent business, economic, and financial measures are
memorized and accessible without external knowl-
edge sources. Using these formulae is required for
the program synthesis tasks and is an important
part of many business and financial workflow.

There are two main types of functions within
this task: standalone functions and class functions.
The standalone functions represent common finan-
cial formulas, such as computing the simple in-
terest rate accrual on a loan. Many formulae in-
volve reasoning about the structured relationships
between a common set of items, such as computing
EBITDA or Net Income from a balance sheet. To
evaluate these types of formulae, we implement
shared classes that represent financial documents
(Balance Sheet, Income Statement, Statement of
Cash Flows) with attributes representing items that
you might find within these documents.

The model is given a function stub including a
docstring and type hints. For the functions that are
part of a class, the model is also given the class def-

Figure 8: Example of Retrieved Financial Function

Back to Table of Contents 11 Back to the First Page

Question: What is the anticipated portfolio return made by an investment
company analyst named Maud, under two scenarios of portfolio returns in
various economic conditions (expressed as a percentage) ? Answer to a single
decimal place.

Image:

Structured Data:
| Scenario | Probability of scenario (%) | Portfolio return | Probability of return (%) |\n| good
economic situation | 70 | 20% | 50 |\n| good economic situation | 70 | 10% | 50 |\n| bad economic

situation | 30 | 5% | 60 |\n| bad economic situation | 30 | -10% | 40 |

Figure 9: Example of Parsing-Reasoning Pipeline

Back to Table of Contents 12 Back to the First Page

Model Organization Source
Claude 3.7 Sonnet (Thinking) Anthropic claude-3-7-sonnet-20250219
Claude 3.7 Sonnet Anthropic claude-3-7-sonnet-20250219
GPT-4o OpenAI gpt-4o-2024-11-20
OpenAI o1 OpenAI o1-2024-12-17
Gemini 2.0 Flash Thinking Google DeepMind gemini-2.0-flash-thinking-exp-01-21
Gemini 2.0 Pro Google DeepMind gemini-2.0-pro-exp-02-05
Gemini 2.0 Flash Google DeepMind gemini-2.0-flash
Gemma 3 27B Google DeepMind gemma-3-27b-it
Qwen-Omni-Turbo Alibaba Qwen qwen-omni-turbo-2025-01-19
Qwen2.5-VL-72B Alibaba Qwen qwen2.5-vl-72b-instruct
QvQ-72B-Preview Alibaba Qwen qvq-72b-preview
Pixtral Large MistralAI pixtral-large-latest
Mistral Small 3.1 Mistral AI mistral-small-3.1-24b-instruct
InternVL2.5-78B OpenGVLab OpenGVLab/InternVL2_5-78B
Grok 2 Vision xAI grok-2-vision-1212
Llama 4 Maverick AI@Meta llama-4-maverick

Table 1: Specifications of MLLMs Evaluated on FinMMR.

Model Size Extended
thinking

Hard Medium Easy Avg. Token (M)

CoT PoT CoT PoT CoT PoT CoT PoT CoT PoT

Claude 3.7 Sonnet ✔ (64K) 50.67 50.33 66.00 63.00 75.67 75.33 64.11 62.89 2.44 3.02
Claude 3.7 Sonnet ✘ 50.33 49.00 63.67 60.00 75.33 74.00 63.11 61.00 0.27 0.24
Qwen2.5-VL-72B 72B ✘ 41.33 48.67 66.00 64.00 77.00 70.00 61.44 61.45 0.28 0.12
GPT-4o ✘ 46.00 47.67 66.00 63.67 73.33 73.67 61.78 61.67 0.23 0.11
InternVL2.5-78B 78B ✘ 38.00 47.67 57.00 60.67 69.00 69.33 54.67 59.22 – –
Gemini 2.0 Flash Thinking ✔ 46.67 46.67 67.00 60.33 73.67 73.33 62.45 59.00 0.33 0.13
Gemini 2.0 Flash ✘ 46.67 46.00 63.33 55.67 70.00 71.33 60.00 57.67 0.31 0.12
Gemini 2.0 Pro ✘ 45.00 44.00 61.33 62.00 71.33 71.33 59.22 59.78 0.23 0.12
OpenAI o1 ✔ – 45.00 – – – – – – – 0.61
QVQ-72B-Preview 72B ✔ 40.33 6.00 58.33 8.33 73.33 11.00 57.33 8.44 1.46 1.54
Qwen-Omni-Turbo ✘ 18.33 30.33 35.67 45.33 53.67 60.67 35.89 45.44 0.24 0.11
Grok 2 Vision ✘ 27.67 26.33 42.67 33.67 72.00 73.00 47.45 44.33 0.30 0.16
Pixtral Large 124B ✘ 25.00 27.00 38.67 38.00 65.33 67.33 43.00 44.11 0.28 0.20

Table 2: Results of different models using CoT and PoT prompting methods on the validation
set of FinMMR. We use the best Accuracy on the Hard subset as the ranking indicator of model
performance.

Back to Table of Contents 13 Back to the First Page

CoT Prompt Template

SYSTEM_INPUT = '''You are a financial expert, you are supposed to answer the given
question based on the provided image and context. You need to first think through
the problem step by step, identifying the exact variables and values, and
documenting each necessary step. Then you are required to conclude your response
with the final answer in your last sentence as 'Therefore, the answer is {final
answer}'. The final answer should be a numeric value.'''

↪→
↪→
↪→
↪→
↪→

USER_INPUT = '''The following question context is provided for your reference:
{question_context with image tags like <image1>}
Question:
{question_question}
Let's think step by step to answer the given question.'''

Figure 10: CoT Prompt Template

Back to Table of Contents 14 Back to the First Page

PoT Prompt Template

SYSTEM_INPUT = '''You are a financial expert, you are supposed to generate a Python
program to answer the given question based on the provided image and context. The
returned value of the program is supposed to be the answer. Here is an example of
the Python program:

↪→
↪→
↪→
```python
def solution():

# Define variables name and value
revenue = 600000
avg_account_receivable = 50000

# Do math calculation to get the answer
receivables_turnover = revenue / avg_account_receivable
answer = 365 / receivables_turnover

# return answer
return answer

```
'''

USER_INPUT = '''The following question context is provided for your reference:
{question_context with tags like <image1>}
Question:
{question_question}
Please generate a Python program to answer the given question. The format of the

program should be the following:↪→
```python
def solution():

# Define variables name and value

# Do math calculation to get the answer

# return answer
```

Continue your output:
```python
def solution():

# Define variables name and value
```
'''

Figure 11: PoT Prompt Template

Back to Table of Contents 15 Back to the First Page

RAG Prompt Template

SYSTEM_INPUT = '''You are a financial expert, you are supposed to answer the given
question. You need to first think through the problem step by step, identifying
the exact variables and values, and documenting each necessary step. Then you are
required to conclude your response with the final answer in your last sentence as
'Therefore, the answer is {final answer}'. The final answer should be a numeric
value.'''

↪→
↪→
↪→
↪→
↪→

USER_INPUT = '''The following question context is provided for your reference:
{question_context with image tags like <image1>}
Question:
{question_question}

To assist you in solving the problem, I will provide some financial functions for
reference.↪→

Important Notes:
1. Do not directly call or use the provided reference functions in your

implementation.↪→
2. The reference functions are only intended to help you understand the logic and

approach for solving the problem, when it is appropriate.↪→
3. You must implement the solution from scratch, using your own code and logic.
4. Ensure that your implementation is independent and does not rely on the provided

functions.↪→
5. If the reference functions are not applicable to the problem, ignore them entirely

and focus on solving the problem based on your own understanding.↪→

The following are the financial functions for your reference:
{financial_function}'''

Figure 12: RAG Prompt Template

Back to Table of Contents 16 Back to the First Page

Function Relevance Judgment Prompt Template

SYSTEM_INPUT = '''You are a financial expert, you are supposed to judge whether the
given financial function is useful for answering the question.↪→

For each function, follow these guidelines:
1. Determine if the function can directly address the user’s problem, considering the

function's purpose, input parameters, and return values.↪→
2. Consider the applicability range of the function, assumptions, limitations, and

restrictions when evaluating if it’s relevant.↪→
3. If the function can effectively contribute to solving the problem or is essential

for the calculation or analysis required, respond with [USEFUL].↪→
4. If the function cannot effectively help in solving the problem, or is irrelevant

based on its scope and assumptions, respond with [USELESS].↪→

Use financial domain knowledge to ensure that each judgment is precise and aligned
with common practices for problem-solving in the finance domain.'''↪→

USER_INPUT = '''Given a financial question and financial functions, I want you to
analyze each of these function to assess if it can be useful in solving the
question.

↪→
↪→

For each financial function:
1. You need to decide if it is useful based on its fit with the problem’s requirements

and constraints.↪→
2. If the function is relevant to solving my problem, output [USEFUL].
3. If it is not helpful, output [USELESS].
Do not include any additional explanation, just the relevant outputs for each

function.↪→

Question:
{financial_question}

Functions:
{financial_function}

Output the results in the following format:
[USEFUL, USELESS, USELESS, ...]'''

Figure 13: Function Relevance Judgment Prompt Template

Back to Table of Contents 17 Back to the First Page

Visual Relevance Judgment Prompt Template

SYSTEM_INPUT = '''Given a complex financial numeric reasoning question and a set of
images, analyze each image and decide if it is useful for solving the question.↪→

Guidelines:
1. Determine the content displayed and described in each image. Determine whether the

image contains data or information that is used (directly or indirectly) in the
multi-step calculations leading to the answer.

↪→
↪→
2. If the image’s content does not contribute to the solution, output [USELESS].
3. In cases of uncertainty, lean towards labeling an image as [USEFUL] rather than

[USELESS]. The question is designed such that at least one image contains
necessary data. If you think none are clearly helpful, choose the one image most
likely to contain relevant data and label it [USEFUL].

↪→
↪→
↪→
4. You need to first think through the problem step by step, documenting each

necessary step. Then you are required to conclude your response with the final
answer in your last sentence as 'Therefore, the answer is {final answer}'. The
final answer should be the labels in the order of the images. For example:[USEFUL,
USELESS, USELESS, ...]

↪→
↪→
↪→
↪→
Example: For such a question that "Based on the data in the image, calculate the

growth rate of bauxite imports from 2021 to 2022, and round the result to two
decimal places."For this problem, you may infer that in order to solve it, the
import amounts for 2021 and 2022 must be obtained from the images. Once you
identify an image that contains the relevant data, label that image as [USEFUL].

↪→
↪→
↪→
↪→
You may encounter other styles of charts such as bar charts, line charts, etc. with

clear data. Regardless of the category of the image, please carefully consider and
analyze the data in the image according to the above rules.'''

↪→
↪→

USER_INPUT = '''Given a complex financial numeric reasoning question and a set of
images, analyze each image and decide if it is useful for solving the question.↪→

Guidelines:
1. Determine whether the image contains data or information that is used (directly or

indirectly) in the multi-step calculations leading to the answer.↪→
2. If the image’s content does not contribute to the solution, output [USELESS].
3. In cases of uncertainty, lean towards labeling an image as [USEFUL] rather than

[USELESS]. The question is designed such that at least one image contains
necessary data. If you think none are clearly helpful, choose the one image most
likely to contain relevant data and label it [USEFUL].

↪→
↪→
↪→
4. You need to first think through the problem step by step, documenting each

necessary step. Then you are required to conclude your response with the final
answer in your last sentence as 'Therefore, the answer is {final answer}'. The
final answer should be the labels in the order of the images. For example:
[USEFUL, USELESS, USELESS, ...]

↪→
↪→
↪→
↪→
Example: For such a question that "Based on the data in the image, calculate the

growth rate of bauxite imports from 2021 to 2022, and round the result to two
decimal places." For this problem, you may infer that in order to solve it, the
import amounts for 2021 and 2022 must be obtained from the images. Once you
identify an image that contains the relevant data, label that image as [USEFUL].
You may encounter other styles of charts such as bar charts, line charts, etc.
with clear data. Regardless of the category of the image, please carefully
consider and analyze the data in the image according to the above rules. Let's
think step by step to answer the given question.

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
Question:
{financial_question}
'''

Figure 14: Visual Relevance Judgment Prompt Template

Back to Table of Contents 18 Back to the First Page

	Error Analysis
	Augmentation Methods
	Visual Filtering for Reasoning
	Knowledge Augmentation
	Visual Parser with Reasoner

	Prompt Templates
	Chain-of-Thought (CoT)
	Program-of-Thought (PoT)
	Retrieval-Augmented Generation (RAG)
	Function Relevance Judgment
	Visual Relevance Judgment

	Experimental Details
	Model Specifications
	Validation Set Results

