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Supplementary Material

A. Comparison with Previous E2E-AD Methods
Comparison. We summarize two key differences between
HiP-AD and previous E2E-AD methods, primarily in plan-
ning query design and planning interaction, as illustrated
in Tab. 1. Compared to previous E2E-AD models, we
introduce driving-style waypoints prediction to enhance
the precision of autonomous vehicle steering and accel-
eration/deceleration. Furthermore, we employ a multi-
granularity strategy to provide complementary long-short
information, enriching the additional supervision. More-
over, we develop a comprehensive interaction mechanism in
which the planning query not only interacts with perception
tasks but also engages with sparse image features through
planning deformable attention, facilitating the learning of
unannotated scene information.
Motivation of driving-style waypoints. Previous meth-
ods primarily relied on temporal waypoints with different
modalities (e.g., left, straight, right) to enhance the lateral
diversity. However, they explicitly overlook longitudinal di-
versity, which poses challenges for a single lateral modality
to effectively address all scenarios requiring various ego ve-
locities, such as starting, braking, and overtaking. To address
this issue, driving-style waypoints are proposed to decouple
a single trajectory into several waypoints that correspond to
various speed intervals, enhancing longitudinal diversity.

B. More Implementation Details
Supervision. All ground truth (GT) of multi-granularity
waypoints are derived from the future trajectory of the ego
vehicle, differing primarily in the sampling method or strat-
egy. For example, we gather all future locations of the ego
car within a single video and apply linear fitting to obtain a
trajectory function. Then, we can sample from this function
at any equal distance intervals to attain the ground truth of
spatial waypoints. In contrast, temporal and driving-style
predictions share the same ground truth of temporal way-
points, which is sampled directly from future locations at
equal time intervals.

In addition to directly supervising perception and trajec-
tory, we also incorporate additional supervisory signals to
enhance the training process. The auxiliary supervision in-
cludes a sparse depth map and ego status, which can be
formulated as follows:

Laux = Ldepth + Lstatus. (1)

Ablation Routes. There are 220 routes in the Bench2Drive

closed-loop test routes, officially divided into 44 scenarios
based on various weather conditions and scene events. It
is computationally exhaustive for us to conduct all exper-
iments on the total number of test routes. Therefore, to
conserve computational resources, we utilize a small test set
on Bench2Drive for our closed-loop ablation experiments.
It consists of 55 routes (25% of 220) which can be divided
into two parts. The first part includes 44 routes, selected one-
to-one from each of the 44 scenarios, while the remaining
11 routes are chosen randomly. This small test set not only
includes all scenarios but also maintains the distribution of
the total test routes for comprehensive evaluation. We list
route IDs in Tab. 2.

Speed Setting. The speed of driving-style waypoints is
empirically divided into three intervals: [0, 0.4), [0.4, 3),
and [3, 10). Each interval corresponds to different driving
scenarios.

• The interval 0-0.4 corresponds to parking maneuvers.
• The interval 0.4-3 corresponds to low-speed actions, such

as strategic lane changes and stop-and-go situations.
• The interval 3-10 corresponds to normal driving.

NuScenes Training. The training parameters on nuScenes
dataset are similar to those used in Bench2Drive, except that
the resolution is changed to 704× 256 for fair comparison.
Moreover, considering the different intentions between open-
loop and closed-loop evaluations, we set different training
process for nuScenes. First, since nuScenes does not require
precise control, we disable driving-style waypoints during
training and use temporal waypoints for performance evalua-
tion. Second, as a multi-task learning framework, we follow
the training strategy of SparseDrive [6] to maximize percep-
tion performance, which entails first training the perception
component, followed by motion prediction and planning.

Closed-loop Inference. Although we employ waypoints
at varying frequencies for supervision, our model is trained
and inferenced at 2Hz. Considering that the operational
frequency during the Bench2Drive closed-loop simulation
is 10Hz, we set up multiple memory modules (e.g., 5) to
ensure the inference frequency aligns with the training phase
at 2Hz. It means only one memory is available at each
timestamp to output temporal task queries and keep top k
updated task queries. Following [6], we set k as 600 for agent
queries, 0 for map queries, and 480 for planning queries.
Additionally, we list the inference time and parameters of
the model in Tab. 3.



Method
Planning waypoints Planning interaction

heterogeneours waypoints multi-granularity perception scenes representations
default / temporal spatial driving-style BEV global images sparse images

UniAD [1] ✓ ✓
VAD [3] ✓ ✓
Para-Drive [7] ✓ ✓
GenAD [8] ✓ ✓
SparseDrive [6] ✓ ✓
DiFSD [5] ✓ ✓
DriveTransformer [2] ✓ ✓ ✓
CarLLaVA [4] ✓ ✓ ✓ ✓

HiP-AD (ours) ✓ ✓ ✓ ✓ ✓ ✓

Table 1. Comparison of representative related models and our HiP-AD in terms of planning query design and planning interaction.

Scenarios Route IDs

44 scenarios

1711, 1773, 1790, 1825, 1852, 1956, 2050, 2082, 2084, 2115, 2127,
2144, 2164, 2201, 2204, 2273, 2286, 2373, 2390, 2416, 2509, 2534,
2664, 2709, 2790, 3086, 3248, 3364, 3436, 3464, 3540, 3561, 3936,

14194, 14842, 17563, 17752, 23658, 23695, 23771, 23901, 26458, 28087, 28099

11 random routes 1792, 2086, 2129, 2283, 2539, 2668, 26406, 26956, 27494, 27532, 28154

Table 2. A small test set of Bench2Drive for ablation experiments.

Dataset Parameters GFLOPs Latency FPS

nuScenes 90.0M 202.9 109.9ms 9.1
Bench2Drive 97.4M 256.9 138.9ms 7.2

Table 3. The model is measured on a single NVIDIA 3090 GPU.

Control Closed-loop Metric
Lon. Lat. Driving Score↑ Success Rate(%)↑

2Hz 5m 76.35 52.72
2Hz 2m 79.03 56.36
5Hz 5m 81.85 65.45
5Hz 2m 86.05 69.09

Table 4. Ablation study on controlling ego-vehicle under different
configurations.

C. More Experiments

Ganularity Selection. We output spatial waypoints at dense
and sparse distance intervals, along with high-frequency
and low-frequency temporal waypoints, as well as driving-
style waypoints. Therefore, we conduct an ablation study
to explore which configuration yields better vehicle control
in closed-loop system. As shown in the 4, there are four
combinations: dense and sparse intervals, as well as high and
low frequencies. Among these, the sparse-interval and low-
frequency combination perform the worst, while the dense-
interval and high-frequency combination provide the best
vehicle control. Therefore, we chose the dense-interval and
high-frequency combination as the final control method for
our model. It is worth noting that even the worst combination

Number Closed-loop Metric
DS ↑ SR(%) ↑ Eff. ↑ Com. ↑

18 86.56 62.27 197.21 17.35
48 86.77 69.09 203.12 19.36

Table 5. Comparison of the number of modalities: ‘Eff.’ and ‘Com.’
are abbreviations for Efficiency and Comfort.

our approach still outperforms the previous state-of-the-art
methods. This clearly demonstrates the superiority of our
method.
Number of Modalities. Previous methods [6] usually use
18 modalities in Bench2Drive. We provide our 18 modal-
ities results in Tab. 5. The Driving Score, Efficiency, and
Comfortness are similar on modalities 18 and 48. The 48
modalities version improves over 6% on Success Rate, which
indicates increasing the number of modalities also contribute
to the performance of the final completion. It is noticed
that the 18 modalities version is still much better than other
methods in main experiments.
Sparse Interaction. We compare the performance of plan-
ning queries with global and sparse interactions of image
features. In the Global setting, considering memory con-
straints, we employ global attention, where the planning
query interacts with 1/16 downsample image features. In
contrast to Global setting, we utilize the proposed planning
deformable attention to dynamically sample image features
around trajectory points for sparse interaction. As shown
in Tab. 6, the Sparse setting achieves better driving, demon-
strating that sparse local interactions can effectively learn



Setting Interaction Closed-loop Metric
Driving Score↑ Success Rate(%)↑

Global Cross Attention 73.4 49.1
Sparse Deformable Attention 84.2 65.5

Table 6. Comparison of Global and Sparse Interactions.

latent scene representations, which benefits closed-loop sys-
tems.

D. More Qualitative Analysis

We present additional visualization results of our HiP-AD to
demonstrate its effectiveness in both open-loop and closed-
loop evaluations.

D.1. Open-Loop
Bench2Drive. As shown in Fig. 2, we visualize three driving
scenarios on the open-loop validation set of Bench2Drive
in both daytime and nighttime. The three driving scenarios
are giving way to pedestrians, left turn at an intersection,
and detouring around obstacles. We use cyan-blue lines
to represent spatial waypoints, while the purple-red lines
indicate driving-style waypoints.

In the first driving scenario Fig. 2a, HiP-AD detects most
vehicles at the intersection, reconstructing the map and pro-
viding suitable trajectories to ensure that the ego vehicle
can successfully navigates a left turn despite missing lane
markings. In the second driving scenario Fig. 2b, HiP-AD
detects a pedestrian crossing the road in front of the ego
vehicle and predicts waypoints for a cautious driving style,
reducing speed to avoid a collision with the pedestrian. The
third scenario Fig. 2c showcases HiP-AD’s ability to navi-
gate around obstacles, even in complex situations such as
starting from a stop or driving at night.
NuScenes. We also provide visualization results on the
nuScenes dataset, as shown in Fig. 3. These driving scenar-
ios include left turns, straight driving, and right turns under
realistic conditions, such as at intersections or low illumi-
nation. Compared to ground truth, our model effectively
locates obstacles, reconstructs map elements, and produces
planning results that align closely with ground truth. This
demonstrates the robustness of our method in perception and
planning within real-world scenarios.

D.2. Closed-loop
Qualitative Results. The closed-loop visualization results
of Bench2Drive are shown in Fig. 4. It illustrates the
decision-making process and precise control of HiP-AD
across various scenarios, including urban streets, intersec-
tions, and highways, under conditions such as nighttime
and fog. Thanks to the proposed strategies and the unified
architecture, HiP-AD demonstrates strong adaptability and
robustness in these closed-loop scenarios.
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Figure 1. Illustration of failure cases on closed-loop test routes.

Limitation. We illustrate some typical limitation cases as
illustrated in Fig. 1. HiP-AD fails to yield to oncoming
vehicles when overtaking and give way to emergency vehi-
cles when turning. A potential explanation is that HiP-AD
lacks the capability for long-range perception and active
avoidance, which will be focused on our future work.
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(a) Left turn at an intersection.

(b) Give way to pedestrians.

(c) Detour around obstacles.

Figure 2. Illustration of open-loop results on Bench2Drive validation dataset.



Figure 3. Illustration of open-loop results on nuScenes validation dataset.



Figure 4. Illustration of closed-loop results on Bench2Drive test routes.
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