~» RoboPearls: Editable Video Simulation for Robot Manipulation

Supplementary Material

Contents

A.l. Social Impact and Limitations. 13
Al.l.FutureWork 13
A.1.2. Limitaions 13
Al3.Scope e 14

A.2. Additional Related Work 14
A2.1.LLMAgent 14

A.3. Additional Details 14
A.3.1. More Details on Dynamic Gaussians 14
A.3.2. More Details on Editable Video Simulation 14
A.3.3. More Details on the LLM Agents 15
A.3.4.More Detailsonthe VLM 15
A.3.5. Experimental Setting 15
A.3.6. Real World Robot Setup 15

A.4. Additional Results 16
A.4.1. More Results on Visual Metrics 16
A.4.2. More Simulation Results 16
A.4.3. More Manipulation Tasks Results 16

A.5. Additional Visualizations 17
A.5.1. Spatial-temporal Consistency 17
A.5.2. Identity Encoding Features 17

A.1. Social Impact and Limitations.
A.1.1. Future Work

As this paper is the first to construct photo-realistic simula-

tions, there remain many benefits yet to be explored.

* First, our approach inherently supports novel view syn-
thesis. While RVT [20] leverages point clouds to gener-
ate virtual images, our method enables the rendering of
realistic images from new viewpoints, potentially unlock-
ing significant advancements for models like RVT. More
recently, Act3D [19] and SAM2Act [16] have leveraged
foundation models, such as CLIP and SAM, to extract
image embeddings for robotic manipulation. However,
these single-image foundation models lack a fundamen-
tal understanding of the 3D scene and are sensitive to
view variations, leading to the generation of noisy and
view-inconsistent masks or features, which in turn cause
manipulation failures. In contrast, our RoboPearls distills
open-world semantics into 3D space and can render view-
consistent semantic features, as shown in Fig. 14, offering
the potential to further improve the performance of recent
sota models.

» Second, the interaction perspective remains largely unex-
plored. Existing methods, such as GraspSplats [30], use
3DGS to reconstruct static scenes, whereas our approach
handles dynamic environments with semantic features, al-
lowing for more effective generation of grasping propos-
als using explicit Gaussian primitives.

e Third, recent vision-language-action (VLA) models
based on VLMs, such as Hi Robot [61] and Helix [18],
have garnered significant attention for their ability to pro-
cess complex instructions and generate dexterous ma-
nipulations. However, collecting and scaling vision-
language data remains a significant challenge. Our Robo-
Pearls framework allows users to generate complex sim-
ulations using natural language instructions, which en-
ables the effective expansion of vision-language-aligned
datasets and potentially enhances model performance.

* Fourth, our work advances the goal of realistic closed-
loop simulation. Currently, we utilize VLM to enhance
training performance in a closed-loop manner. However,
our high-quality reconstruction and rendering capabili-
ties enable robust closed-loop policy evaluation, and pave
the way for developing a GS-based closed-loop reinforce-
ment learning (RL) training paradigm to further improve
robotic learning.

A.1.2. Limitaions

Beyond these promising directions, there are also limita-
tions that we aim to address in future work.

* The primary challenge lies in generalization, as our ap-
proach relies on scene-specific training for each environ-
ment. Fortunately, recent advancements in Generalizable
Gaussian Splats [7, 10] provide a promising avenue to
mitigate this issue.

* Moreover, as shown in Tab. 5, the training and processing
time for high-resolution real-world scenes is still some-
what lengthy. Fortunately, recent methods [43, 91] have
significantly optimized and accelerated Gaussian fitting,
offering the potential for further improvements.

¢ Additionally, while incorporating VLM reduces reliance
on human experts to some extent, handling highly com-
plex scenes remains challenging. A practical approach is
to first utilize VLM to enhance model performance and
only involve human intervention when necessary. This
strategy is still an improvement over previous methods
that relied entirely on human analysis.

Table 5. Processing time of each module. The time is evaluated
on Ego4d real-world scene with 120 frames on the resolution of
1918 x 1237 on 1 GPU.

Module \ Recon Insert Remove Color Texture Physics
Time (min) | ~70 ~6 ~6 ~1 ~5 ~7
A.1.3. Scope

RoboPearls supports various scene edits (Fig. 2 (b) and
Sec. 3.3), except for action-relevant edits, more exactly,
generating new manipulation trajectories, which is out of
scope. We leave action editing for future work.

Altogether, we hope that our work will inspire further
research and contribute to the advancement of robotic sim-
ulation and learning.

A.2. Additional Related Work

A.2.1. LLM Agent

Significant advances in Large Language Models (LLMs),
e.g., GPT-4 [1] and DeepSeek-R1 [24], have demonstrated
their remarkable capabilities across various domains. By
integrating LLMs as agents, many works [40, 56, 83] have
enhanced problem-solving abilities in interactive and au-
tonomous applications. For example, AutoGen [75] lever-
ages well-organized LLM agents to form operating pro-
cedures and code programming. ChatSim [71] adopts an
LLM-agent collaboration workflow for editing 3D driv-
ing scenes, and RoboGen [70] uses generative models and
LLMs to generate robotic tasks. In this work, we utilize
LLM agents to decompose user simulation demands into
concrete commands for specific editing functions, thereby
automating and streamlining the simulation process.

A.3. Additional Details

A.3.1. More Details on Dynamic Gaussians

To integrate semantic information into the dynamic Gaus-
sians, it is worth noting that the identity encoding e is inde-
pendent of timestamp ¢ and remains unchanged throughout
the time series. Moreover, during densification, newly gen-
erated Gaussian primitives inherit the identity encoding of
their predecessors. This ensures that Gaussian primitives
associated with a specific object do not acquire the identity
labels of other objects over time, thereby maintaining spa-
tiotemporal consistency.

A.3.2. More Details on Editable Video Simulation

Incremental Semantic Distillation. The pipeline is in
Fig. 6. After retrieving the desired object Gaussians, we
render the 2D object mask and use G-DINO to verify
whether it corresponds to the desired object. If the target

Verified by Fine-gained

G-DINO Label
R h 5 —_—

oD
Fine-tune

Original Scene © Retrieval failure

Return “Button”

Return the whole “Stove”

Figure 6. The incremental semantic distillation pipeline (zoom-
in for the best of views).

object is not identified, we further use bounding boxes as
prompts to SAM for a finer-grained segmentation and fine-
tune the identity encoding of the retrieved object Gaussians.

: Delete ! New ! Inpainting
(Gaussians| > K
— ‘ — Fine-tune

Original Scene

Figure 7. The object removal pipeline.

Object Removal. The pipeline is shown in Fig. 7. After
deleting the 3D object Gaussians, we use G-DINO to detect
the “blurry hole” and apply LAMA inpainting on each view.
Then, we generate new Gaussians near the deletion area and
fine-tune only these newly introduced Gaussians with the
inpainted views.

s ’ —_—
LGM
Query i‘ @ No matching l

“Mushroom house”

. w
Qw — 3
£ Database & Insert E ;

Figure 8. The 3D asset management pipeline.

3D Asset Management. The pipeline is shown in Fig. 8.
The 3D Asset Management agent first retrieves desired 3D
objects from the Gaussian database by matching object at-
tributes such as color and type. If the matching is un-
available, the agent employs a Gaussian object generation
model, e.g., LGM, to synthesize the desired object, and then
incorporate it into the database.

e
o

Desired object
Recon
-a regularization

Background area

Original Scene

Figure 9. The texture modification pipeline (zoom-in for the best
of views).

Texture Modification. The pipeline is shown in Fig. 9. We
render masks of the target 3D object to optimize only the
SH parameters of the object Gaussians with the NNFM loss

while preventing artifacts on regions outside the mask with
the original reconstruction loss.

A.3.3. More Details on the LLM Agents

In Fig. 10, we provide detailed prompts and examples of
the LLM agents. Each agent is equipped with unique
LLM prompts and tailored system functions to their spe-
cific duties. All tailored agents collaborate to execute the
simulation based on user commands following a sequen-
tial pipeline. Additionally, the Simulation Manager Agent
records all simulation configurations, enabling multi-round
editing and further refinements as needed.

A.3.4. More Details on the VLM

In Fig. 11, we provide detailed prompts and examples of
the VLM. The VLM is prompted to analyze keyframes of
failure cases and provide detailed explanations across po-
tential failure causes, such as object position, color, and
background texture. Then the VLM further generates cor-
responding simulation solutions in natural language, which
are then fed into our simulation framework to generate tar-
geted simulations for enhancing model training.

A.3.5. Experimental Setting

Datasets and Simulation Setup. Our experiments are con-
ducted in the popular multi-task manipulation benchmark
RLBench [29] and the generalization evaluation bench-
mark COLOSSEUM [55]. RLBench is built on the Cop-
pelaSim [58] simulator, where a Franka Panda Robot is con-
trolled to manipulate the scene. The benchmark contains
100 tasks, including picking and placing, high-accuracy
peg insertions. Each task is specified by a language de-
scription and consists of 2 to 60 variations, which concern
scene variability across object poses, appearance, and se-
mantics. There are four RGB-D cameras positioned at the
front, wrist, left shoulder, and right shoulder. The evalu-
ation metric is the task completion success rate, which is
the proportion of execution trajectories that achieve the goal
conditions specified in the language instructions [19, 62].
COLOSSEUM is a benchmark for evaluating the general-
ization of robotic manipulation. It introduces 13 perturba-
tions across 20 different tasks from the RLBench frame-
work such as close box, and basketball in hoop. These per-
turbations include changes in color, texture, size of objects
and backgrounds, lightnings, distractors, and camera poses.
For simulation, due to limited computing resources, we uti-
lize a curated subset of 6 challenging language-conditioned
manipulation tasks, and follow the original COLOSSEUM
setup and generate 13 environmental perturbations for each
task. We also report the task completion success rate on
COLOSSEUM.

Baselines. We compare RoboPearls with various models
that have been specifically designed for 3D object manipu-

lation including RVT [20], RVT2 [21], and SAM2Act [16],
which are the previous SOTA methods on RLBench and
COLOSSEUM. Since SAM2Act [16] does not provide the
code and model for COLOSSEUM, we only conducted
comparisons with it on RLBench.

Implementation Details. Following RVT [20], we train
RoboPearls for 100k steps, using the LAMB optimizer [86]
optimizer, with an initial learning rate of Se-4. We also
adopt a cosine learning rate decay schedule with warm-up
in the first 2k steps. We use the SE(3) [62, 89] augmenta-
tion, i.e., translation augmentation of 12.5 cm along the z,
vy, and z axis and rotation augmentation of 45° along the z
axis, for expert demonstrations training to enhance the gen-
eralizability of policies. For visual observation, we employ
RGB-D images with a resolution of 128 x 128. All the com-
pared methods are trained on 8§ NVIDIA A100 GPUs with
a batch size of 24. We use 96 demonstrations per task for
training and 25 unseen demonstrations for testing. Due to
the randomness of the sampling-based motion planner, we
evaluate each model 10 times for each task and report the
average success rate and standard deviation.

SfM details. For the Ego4D dataset, we successfully ap-
plied Colmap in most cases, as the moving egocentric view
provides sufficient multiple views. In challenging cases
with sparse views or large motion, Colmap may fail; we
then use DUSt3R [68] as a fallback. For the fixed-view
Open X-Embodiment dataset, Colmap underperforms, and
we instead use DUSt3R with good results.

A.3.6. Real World Robot Setup

Tasks Setup. Our real-world experimental setup consists
of a Kinova Gen3 ultra-lightweight robotic arm with two
Realsense D435i cameras: one mounted on the wrist to
provide a first-person perspective, and the other positioned
opposite the robotic arm to offer a third-person view. We
collect RGB-D frame-action data for three tasks, including:
“Pick up”-Pick up the yellow block, “Place in”-place the
yellow block between the blue and red blocks, and “Put on”-
put the yellow block to the green subregion. For each task,
we recorded 15 demonstrations, capturing visual, state, and
action data. The models are tested with seen/unseen objects
to further evaluate generalization capability.

Implementation Details. We fine-tuned our model on the
collected dataset using RDT [40], enabling effective gen-
eralization across different task variations. RDT-1B, the
largest imitation learning Diffusion Transformer to date,
features 1 billion parameters and is pre-trained on over 1
million multi-robot episodes. It processes language instruc-
tions and RGB images from up to three viewpoints to pre-
dict the next 64 robot actions. RDT-1B is highly versatile,
supporting a wide range of modern mobile manipulators,
including single-arm and dual-arm systems, joint-based and

% Simulation Manager Agent

Role: RoboPearls is an editable video simulation framework for robotic manipulation, built upon 3DGS to support various simulation operations. You are the simulation manager responsible for decomposing
user simulation commands into concrete natural language instructions and dispatching tasks to the relevant simulation agents.

Input: User simulation commands.

Task: The user requires editing a simulation in a robotic scenario. Your job is to break this down into one or more supportable simulation tasks and translate them into natural language instructions for the
corresponding agents. The five supportable agents include: <grounding agent>: retrieves the target object, <scene operation agent>: supports operations such as object insertion, deletion, and modification (size,
position, color, texture), physics simulation; <3D asset management agent>: organizes and retrieves 3D assets; <scene refiner agent>: refines the scene; <scene renderer agent>: renders scene from desired
perspectives.

Instructions: Please retain all the semantics and adjunct words from the original text. Split the tasks and natural language instructions into a dictionary, where the key is the agent, and the value is the
corresponding natural language instruction. These instructions will be executed sequentially, and the tasks should be independent of each other.

Example: Input: Insert a red cup to the right of the table, and adjust the view to focus on the cup. Output:{"<grounding agent>": "the right of the table", "<3D asset management agent>": "red cup", "<scene
operation agent>": "insert the red cup to the right of the table", "<scene refiner agent>": "refine the scene", "<scene renderer agent>": "render the scene with the view focused on the cup"}

Output Format: {"<xxx agent>": "natural language instructions"}

P* Grounding Agent

Role: You are the grounding agent, responsible for retrieving objects based on user natural language instructions.

Input: User grounding commands.

Task: Call the system's retrieve function based on the user's natural language instructions to retrieve the target object.

Retrieve Function:Parameters: { "target": "xxx" } Return:{"object": "object category id", "3D location": "(x,y, z)", "object size": "(1, w,h)"}

Instructions: This agent is used to locate and ground a 3D object in the 3D space based on the user’s input. Note that the 3D locations of objects can be used to calculate the distance between two objects: d=(x1-
X2)A2 + (y1-y2)A2+(z1-22)72.

Output Format: {"object": "object category id", "3D location": "(x,y,z)", "object size": "(I, w, h)"}

p+ Asset Manager

Role: You are the 3D asset agent, responsible for matching objects from the database or generating objects based on user natural language instructions.

Input: User new object commands.

Task: Call the system's matching function based on the user's natural language instructions to retrieve the target object from the database. If the return value is NAN, call the system's generation function.
Matching Function: Parameters: { "target": "xxx" } Return: { "object": "object Gaussians" } or NAN; Generation Function: Parameters: { "target": "xxx" } Return: { "object": "object Gaussians" }
Output Format: { "object": "object Gaussians" }

8@ Scene Operation

Role:You are the scene operation agent, responsible for performing various editing operations based on user natural language instructions.

Input: User editing commands.

Task: Call the system's corresponding editing function based on the user's natural language instructions.

Insert Function:Parameters: { "object Gaussians": "xxx", "position": "xxx" }; Delete Function:Parameters: { "target": "xxx" }; Modification Function:Parameters: { "target object": "xxx", "type": "xxx", "size":

"xxx", "position": "xxx", "color": "xxx", "texture": "xxx" }; Physics Simulation:Parameters: { "target object": "xxx", "physics": "xxx" }.

8@ Scene Refiner

Role:You are the scene refiner agent, responsible for refining the edited scene.
Task: Call the system's refine scene function.

o
Scene Renderer
c:

Role: You are the scene renderer agent, responsible for rendering the scene from desired perspectives based on user natural language instructions.
Input: User rendering commands and original viewpoint.

Task: Generate an appropriate viewpoint based on the user's natural language instructions, and then call the system's rendering function.
Rendering Function: Parameters: { "viewpoint": "xxx" }Return:{ "simulation videos" }

Figure 10. The prompts and examples of the LLM agents (zoom-in for the best of views).

end-effector control, position and velocity control, and even Method | Reconstruction | Simulation (12I-CLIP)

wheeled locomotion. For our task, we primarily adjust the | (PSNR/LPIPS/SSIM) | Remove Insert Texture Color
RDT chunk 51ze’to 4 aqd fill its act19n§ to the right-arm 1P2P [3] ~ 776 821 667 693
portion of the unified action vector, aligning with the RDT RoboPearls | 40.6/0.08/096 | 93.6 972 925 92.9

pre-training datasets. Additionally, we set the control fre-
quency of our data to 10. We use an observation window
of two frames, which are fed into the head and right wrist
image inputs of RDT. The training batch size is set to 20,
while all other settings remain consistent with the official
RDT configuration, including a learning rate of le-4, the
AdamW optimizer, and acceleration via DeepSpeed. We
train for 2000 steps.

Table 6. Visual metrics. Avg. of RLBench, Open-X, and Ego4D.

A.4.2. More Simulation Results

In Fig. 12 (a), we present detailed simulations on the RL-
Bench. Our RoboPearls supports a comprehensive set of
simulation operators.

A.4. Additional Results

A.4.1. More Results on Visual Metrics . .
A.4.3. More Manipulation Tasks Results

In Tab. 6, we add reconstruction metric results and, follow-

ing your advice, include CLIP scores for novel view simu-
lations. Our model consistently outperforms IP2P in visual
metrics (see visualizations in Fig. 13).

In Fig. 12 (b), we show more task demonstrations on the
RLBench. RoboPearls successfully performs multiple ma-
nipulation tasks.

Role:
You are an expert in the field of robotic learning. A robotic model has failed a task, and you are provided with both the training data and a set of failure cases.
Your objective is to analyze the issue, identify the cause of the failure, and suggest corresponding solutions.

Input:

1. The training data is summarized in a thumbnail that displays the learned demonstrations.
2. The failure cases are provided in several keyframe images, which visually indicate the cause of the failure.

P

Task:
Your task is to analyze the failure cases and provide a reasonable explanation for the failure, along with suggested improvements. You should focus on factors such as the desktop texture, desktop color,
environmental lighting, background color, and the types, quantities, positions, and color combinations of interactive objects. These factors can significantly influence the success of the task.

Possible Failure Reasons and Suggested Improvements:

1 The placement of interactive objects is not diverse enough, causing the model to overfit and misjudge object positions.
Solution: Add more diverse placement scenarios and increase the variety of training trajectories.

2 The colors of the objects in the training data were not varied enough, leading to poor generalization by the model.
Solution: Increase the diversity of interactive object colors.

3 The textures of the objects in the training data were not varied enough, leading to poor generalization by the model.
Solution: Increase the diversity of object textures.

4 The desktop texture is not varied enough, causing the model to fail in new environments.
Solution: Introduce more diverse desktop textures in the training data.

5 The desktop color is not varied enough, causing the model to fail in new environments.
Solution: Add more diverse desktop color scenarios.

6 The background patterns are not diverse enough, causing the model to fail in new environments.
Solution: Introduce more varied background patterns in the training data.

7 The environmental light colors are not diverse enough, causing the model to fail in new environments.
Solution: Include more diverse lighting scenarios with varying light colors.

8 Unintended interference in the workspace leads to failure.
Solution: Add training data that includes interference objects.

9 Other failure causes that may be inferred.

Instructions:

Choose potential failure causes listed above, and provide an explanation and solution. Your judgment should be as detailed and accurate as possible, with reasoning supported by the images and training data.

For example, if the training data contains several colors but the failure case features an object with a color not seen in the training set, explain how this discrepancy contributes to the failure.

Output Format:

1. Failure Reason: <chosen reason>

2. Explanation: <explanation of why the failure occurred, based on the images and training data provided>
3. Solution: <suggested improvement for the training data to fix the issue>

@ Failure Reason: The colors of the objects in the training data were not varied enough, leading to poor generalization by the model.

Explanation: In the training data provided (first image), the cups are predominantly in shades of red, purple, and green. Notably, there is significant repetition of these colors across the scenarios. In the
failure case (second image), the robot is required to interact with cups in red, teal (or pale blue), and blue. The teal and blue cup does not closely resemble any of the colors seen frequently in the training
data. Because the training images lack sufficient variation in color— particularly in shades like teal or blue—the model likely struggled to identify or interact with the teal cup due to its unfamiliarity.

Solution: To enhance the model's performance and generalization capabilities, it is essential to introduce a broader range of cup colors in the training data. Specifically, including more colors that are
underrepresented, such as teal, light blue, orange, and yellow, will help the model better recognize and interact with objects in various color settings. This increased color diversity will enable the robotic

system to perform more effectively in real-world scenarios or environments with different object colors.

Figure 11. The prompts and examples of the VLM (zoom-in for the best of views).

A.S. Additional Visualizations
A.5.1. Spatial-temporal Consistency

Fig. 13 demonstrates that our simulation maintains sig-
nificant spatial-temporal consistency, whereas the baseline
IP2P struggles.

A.5.2. Identity Encoding Features

In Fig. 14, we adopt PCA to visualize the Identity Encoding
features with the rendered semantic and can observe that the
approach provides an effective way to select 3D objects in
the scene.

(a) Simulations

Back d texture B:

ground color Insert Environment Lightning

(b) Tasks

Basketball in hoop Close box Insert peg Push buttons Put groceries Stack cups

Figure 12. The detailed simulations (a) and more tasks (b) on
RLBench (zoom-in for the best of views).

Original

IP2P

Original RoboPeals

IP2P

RoboPeals

Figure 13. The visualizations of the spatial-temporal consis-
tency (zoom-in for the best of views).

Original Scene Semantic Prediction PCA Feature Visualization

Figure 14. The visualizations of the learned feature vectors.

