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A. Details and more results in Sec. 3.2
In this section, we present the detailed settings for exper-
iments of approximating fine-tuned weights in Sec. 3.2.
Moreover, we provide results of more layers in the SDXL(-
Inpaint) models, and models from other domains, e.g., large
language models.

First, we present the experimental settings. For re-
sults in Fig. 2, the pre-trained weight W0 is taken from
the pre-trained SDXL model and the key for the layer is
mid block.attentions.0.transformer blocks
.0.attn1.to k. The shape of W0 is 1280× 1280. The
detailed settings for three cases in Fig. 2 are as follows.
1. Additive low-rank difference. The target weight is

computed by W∗ = W0 + σB∗A∗, where the rank of
B∗A∗ is 128. Each element of B∗ and A∗ is drawn i.i.d.
from N (0, 1). After B∗ and A∗ are generated, we com-
pute σ to scale this difference part so that W∗ −W0 has
the same standard deviation with the case where W∗ is
the true fully fine-tuned weight from SDXL-Inpaint.

2. Orthogonal rotation. The target weight is computed by
W∗ = W0T∗, where T∗ is a random orthogonal matrix.
To generate this orthogonal matrix, we firstly generate a
random matrix X = I1280 + F , where each element of
F is drawn i.i.d. from N (0, 0.052). Then, T∗ is com-
puted by the QR decomposition of X .

3. True fully fine-tuned weight. The target weight W∗
is taken from the SDXL-Inpaint model [56] in the same
layer with W0.
All approximation methods are optimized by minimiz-

ing the Mean Squared Error (MSE) with Adam optimizer
using learning rate 1e−3 for 500 epochs, which is sufficient

for them to converge. The settings of these methods are as
follows.

I. OFT. We take the block diagonal structure and Cay-
ley transform as in [47]. We vary the block size to get
different parameter sizes.

II. LoRA. We vary the rank to get different parameter
sizes.

III. TR. We use the TR form defined in Eq. (5) to replace
the low-rank matrix decomposition in Eq. (1). The
size of the pre-trained weight is 1280 × 1280. We
reshape it into 1280 = 8 × 8 × 4 × 5 and choose
different TR ranks to get different parameter sizes.

IV. OFT + LoRA. For OFT, we set the block size to 5,
and combine it with LoRA of different ranks.

V. TRM + LoRA. We choose TRM with rank 1, and
combine it with LoRA of different ranks.

VI. TRM + TR. We choose TRM with rank 1, and com-
bine it with TR of different ranks.

Then, we provide results of different layers in the
SDXL(-Inpaints) models in Fig. 6. To investigate the po-
tential application of our method in large language mod-
els, we also conduct similar investigations in Llama2 7B
and Llama2-chat 7B models [57], as shown in Fig. 7. The
size of SDXL weights is 1280× 1280, while the size of the
Llama2 7B weights is 4096 × 4096. For both models, we
have similar observations as in Sec. 3.2. Moreover, in the
SDXL model, we find the effect of adding the transform is
more significant for key and query weights. It would be in-
teresting to analyze this effect more theoretically in the fu-
ture. Besides, compared to SDXL, the TR structure appears
to be more effective in the Llama2 models. This may be
because that the tensor decomposition is more suitable for
compression of weight matrices with larger sizes. A future
direction would be exploration of our method in fine-tuning
large language models.

B. Proposed model

B.1. Expressiveness of TRM

In this subsection, we present details of the simulation study
in Fig. 3, Sec. 3.3. To empirically compare TRM with But-
terfly matrices in BOFT, we randomly generate orthogonal
matrices and evaluate the approximation error. In specific,
we generate a random matrix X of shape 512× 512, where
each element is i.i.d. from unit Normal distribution N (0, 1).
Then, the target orthogonal matrix T∗ is obtained from the
QR decomposition of X . We approximate T∗ using BOFT



Figure 6. Simulation on different layers of the SDXL and SDXL-Inpaint models.



Figure 7. Simulation on different layers of the Llama2 7B and Llama2-chat 7B models.

and TRM by minimizing the MSE with Adam optimizer.
For BOFT, we test 2, 4, and 16 Butterfly factors, as

in [32]. For each setting, we test the number of diagonal
blocks ranging from 1 to 9, 1 to 8, and 1 to 6, denoted as
BOFT(1:9, 2), BOFT(1:8, 4), and BOFT(1:6, 16) respec-
tively. For TRM, we test different tensor shape, namely,
4×4×4×8, 8×8×8, and 16×32. Then, we set different
TR ranks to obtain results of different parameter sizes. In
Fig. 3, we find the results of TRM are robust to the choices
of tensor sizes, and are consistently better than BOFT. Be-
sides, even there is no orthogonal constraints for TRM, it
can approximate orthogonal matrices well.

B.2. Proof of Props. 1 and 2
In this subsection, we provide the derivation of Props. 1
and 2.

Proof of Prop. 1. According to the definition of TRM in
Eq. (4), we have

T [i1 · · · iD, j1 · · · jD] =

tr(A1[i1, j1, :, :] · · ·AD[iD, jD, :, :]).

Following the initialization in Prop. 1, for d = 1, . . . , D,
if id = jd, all the elements of Ad[id, jd, :, :] equal to 1/R,

else zero. Then we can discuss the diagonal and non-
diagonal elements of T separately.

1. For non-diagonal elements, i.e., i1 · · · iD ̸= j1 · · · jD,
there is at least one sub-index id ̸= jd. Therefore,
T [i1 · · · iD, j1 · · · jD] = 0, since Ad[id, jd, :, :] = 0 if
id ̸= jd.

2. For diagonal elements, i.e., i1 · · · iD = j1 · · · jD, we
have id = jd,∀d = 1, . . . , D. Now the core ten-
sors become Ad[id, jd, :, :] = 1R×R/R,∀d = 1, . . . , D
and id, jd = 1, . . . , Id, where 1R×R is a matrix of
shape R × R with all elements being one. Therefore,
T [i1 · · · iD, j1 · · · jD] = 1, since

tr

(
1R×R

R
· · · 1R×R

R

)
= 1.

Therefore, T is an identity matrix.

Proof of Prop. 2. For simplicity, in this proof, we denote
Ad[id, jd] = Ad[id, jd, :, :] and Bd[id, jd] = Bd[id, jd, :, :].
Suppose X has shape I × K with I =

∏D
d=1 Id and

K =
∏D

d=1 Kd, and Y has shape J×K with J =
∏D

d=1 Jd.
According to the definition of TRM in Eq. (4), we can com-



pute the product Z = XY ⊺ as follows,

Z[i1 · · · iD, j1 · · · jD]

=

K1,...,KD∑

k1,...,kD=1

X[i1 · · · iD, k1 · · · kD]Y [j1 · · · jD, k1 · · · kD]

=

K1,...,KD∑

k1,...,kD=1

tr(A1[i1, k1] · · ·AD[iD, kD])

· tr(B1[j1, k1] · · ·BD[jD, kD])

=

K1,...,KD∑

k1,...,kD=1

tr
{
(A1[i1, k1] · · ·AD[iD, kD])

⊗(B1[j1, k1] · · ·BD[jD, kD])
}

=

K1,...,KD∑

k1,...,kD=1

tr
{
(A1[i1, k1]⊗ B1[j1, k1])

· · · (AD[iD, kD]⊗ BD[jD, kD])
}

= tr

{
K1,...,KD∑

k1,...,kD=1

[
(A1[i1, k1]⊗ B1[j1, k1])

· · · (AD[iD, kD]⊗ BD[jD, kD])
]}

= tr

{
K1∑

k1=1

(A1[i1, k1]⊗ B1[j1, k1])

· · ·
KD∑

kD

(AD[iD, kD]⊗ BD[jD, kD])

}
,

which follows a TR format. Therefore XY ⊺ =
TRM(C1:D), where each core tensor Cd[id, jd, :, :] =∑

ld
(Ad[id, ld, :, :]⊗ Bd[jd, ld, :, :]).

To make X orthogonal, i.e., XX⊺ = I , we can regular-
ize C1:D according to the initialization scheme in Prop. 1.

C. Experiments

In this section, we provide experimental details and more
results. All the experiments are conducted on single Nvidia
H100 or A100 GPU with 80GB memory. The code is avail-
able at https://github.com/taozerui/tlora_
diffusion.

C.1. Experimental details
Datasets. For the subject-driven generation, we use the
DreamBooth dataset [52], which includes 30 subjects from
15 different classes. For text prompts, we follow the setting
in Lee et al. [27], Zhang et al. [71]. For each subject, there
are several images with 10 testing text prompts. The dataset

is available at the Github repository1 of Zhang et al. [71].
For the controllable generation task, we consider three

tasks and two datasets. The settings basically follow Qiu
et al. [47]. For the Landmark to Image (L2I) task, we use
the CelebA-HQ [59] dataset. The whole dataset consists of
30k images of faces, captions generated by BLIP [29], and
face landmarks detected by the face-alignment library
[6]. The test set contains 2987 samples. For the Segmenta-
tion to Image (S2I) task, we use the ADE20K 2017 dataset
[74], which consists of 20k training images, segmentations
and captions generated by BLIP. The test set contains 2000
samples. For the Canny to Image (C2I) task, we also use the
ADE20K dataset, where the canny edges are detected using
the same detector as in Zhang et al. [68].

Baselines. We choose the following baselines, which are
highly related to our work and competitive methods.
• LoRA [20], which is the original method.
• DoRA [31], which is a popular extension of LoRA. More-

over, it shares some similarities with our method, as dis-
cussed in Sec. 3.5.

• OFT [47], which applies orthogonal transforms for fine-
tuning. It uses block diagonal transforms for parameter
efficiency.

• BOFT [32], which extends OFT by using Butterfly matri-
ces to construct dense transforms.

• ETHER [4], which adopts Householder reflection to pa-
rameterize orthogonal transforms. In particular, we adopt
the implementation called ETHER+, which relaxes the
orthogonal constraint and applies transforms on the left
and right sides of the pre-trained weight. It is more flexi-
ble and has shown better results in Bini et al. [4].

• LoRETTA [65], which is an extension of LoRA. It fur-
ther factorized LoRA matrices using TT decomposition
for parameter efficiency.
LoRA, DoRA, OFT, and BOFT are provided in the

PEFT library [36]. For ETHER2 and LoRETTA3, we ap-
ply their official implementations in our experiments.

General settings. For all the baselines and our model, we
inject the trainable parameters into the attention modules on
key, value, query, and output layers. This setting is consis-
tent with previous works [4, 32, 47] for a fair comparison.

For the subject-driven generation, we fine-tune the
SDXL [46] model using the Direct Consistency Optimiza-
tion [DCO, 27] algorithm. Following previous works
[27, 52], we set the batch size to 1 and use the AdamW op-
timizer with constant learning rates. For all methods, learn-
ing rates are tuned from {5e−4, 1e−4, 5e−5}. We train the
model for 20 epochs for each individual subject.

1https://github.com/phymhan/SODA-Diffusion
2https://github.com/mwbini/ether
3https://github.com/yifanycc/loretta



Table 3. Hyper-parameters of the subject-driven generation experiment. For OFT, b means the block size. For BOFT, m means the number
of Butterfly factors and b means the block size, which is the same with OFT. For ETHER+, n means the number of blocks. For LoRETTA,
rLoRA means the rank of LoRA and rTT means the rank of TT decomposition. For our method TLoRA, rTRM means the rank of the TRM
transform and rTR means the rank of the TR residual adaptation.

Method LoRA DoRA OFT BOFT ETHER+ LoRETTA TLoRA

Setting r=1 r=1 b=2 (m=2, b=2) n=1 (rLoRA=8, rTT=6) (rTRM=1, rTR=2)
Learning rate 5e−5 5e−5 1e−4 1e−4 5e−4 5e−4 5e−4

Table 4. Hyper-parameters of the controllable generation experiment. For OFT, b means the block size. For BOFT, m means the number
of Butterfly factors and b means the block size, which is the same with OFT. For ETHER+, n means the number of blocks. For LoRETTA,
rLoRA means the rank of LoRA and rTT means the rank of TT decomposition. For our method TLoRA, rTRM means the rank of the TRM
transform, rLoRA means the rank of the LoRA residual adaptation and rTR means the rank of the TR residual adaptation. λ is the scale of
regularization.

Method LoRA DoRA OFT BOFT ETHER+ LoRETTA TLoRA* TLoRA* TLoRA TLoRA

Setting r=1 r=1 b=2 (m=2, b=2) n=1 (rLoRA=8, rTT=6) (rTRM=2, rLoRA=2) (rTRM=2, rLoRA=4) (rTRM=2, rTR=6) (rTRM=1, rTR=8)
Learning rate 5e−4 5e−4 1e−4 1e−4 1e−3 1e−5 5e−4 5e−4 1e−3 1e−3
λ - - - - - - 0 0 1e−3 1e−3

For the controllable generation, we follow the imple-
mentation of ControlNet [68]. It contains a shallow 8-layer
CNN to encode the control signals. For a fair comparison
and being consistent with previous works [4, 32, 47], we re-
port the number of training parameters for adaptation parts
of all methods. The optimizer is AdamW. For the CelebA-
HQ dataset in the L2I task, the batch size is 16 and we fine-
tune the model for 22 epochs. For the ADE20K dataset in
the S2I and C2I tasks, the batch size is 8 and we fine-tune
the model for 20 epochs. For all methods, learning rates
are tuned from {1e−3, 5e−4, 1e−4, 5e−5}. We do some
preliminary learning rate search on the L2I and S2I tasks,
and find the optimal learning rate of each method is simi-
lar for these two tasks. Due to the computational cost, we
use the same learning rate for each method on three tasks.
Moreover, as the training of LoRETTA is unstable, we ad-
ditionally adopt a smaller learning rate 1e−5 for it.

Hyper-parameters. The hyper-parameters for the
subject-driven generation is provided in Tab. 3.

The hyper-parameters for the controllable generation is
provided in Tab. 4. For this experiment, we find adding
the identity regularization RI sometimes helps the perfor-
mance. We apply a scale λ before adding the regularization
on the original loss. The scale λ is chosen from {0, 1e−3}.
Moreover, for tensorization of large matrices, we choose the
following setting, where the keys are original dimensions
and values are dimensions of sub-indices. We do not test
other tensorization shapes.

TENSOR_SHAPE_DICT = {
'320': [4, 8, 10], '640': [8, 8, 10],
'768': [8, 8, 12], '1280': [8, 10, 16],

'2048': [8, 16, 16], '2560': [10, 16, 16],
'5120': [20, 16, 16], '10240': [32, 20, 16],

}

Evaluation. The evaluation of the subject-driven genera-
tion is described in Sec. 4.1.

For the L2I task, we use the same face landmark detec-
tor provided in the face-alignment library [6] to de-
tect landmarks from generated images. The Mean Squared
Error (MSE) between ground truth and detected landmarks
is reported. For the S2I task, we adopt the SegFormer B4
model [60] pre-trained on the ADE20K dataset for segmen-
tation of generated images. The model is downloaded from
HuggingFace4. Then, the mean Intersection over Union
(mIoU), all ACC (aACC) and mean ACC (mACC) metrics
are reported. For C2I, we compute the canny edges of gen-
erate images using the same detector as in [68]. Then, we
evaluate the IoU and F1 score of the Canny edges of gener-
ated images. For each test sample, we generate six images
to report the mean and standard deviation.

C.2. Computational cost
Our method is computationally efficient, since the ten-
sor decomposition structure consists of several small lin-
ear layers Eqs. (4) and (5). The main computational
overhead comes from multiplying pretrained weights with
transform matrices, which is inherent to related methods
such as ETHER, OFT and BOFT. Training times mea-
sured on an NVIDIA A100 GPU for controllable generation

4https://huggingface.co/nvidia/segformer- b4-
finetuned-ade-512-512



Table 5. Computing time.

LoRA DoRA ETHER+ BOFT OFT TLoRA∗(2,4) TLoRA(2,8)

Iter./Sec.↑ 0.58 0.55 0.30 0.35 0.34 0.37 0.34

tasks demonstrate competitive computational efficiency, as
shown in Tab. 5.

C.3. Failure of LoRETTA
When applying the LoRETTA [65] on controllable gener-
ation tasks, we find the training is unstable. It either gen-
erates unrealistic images or diverges. We test learning rates
from {1e−3, 5e−4, 1e−4, 5e−5, 1e−5}. For large learning
rates, it diverges quickly, while for small learning rates, it
does not learn the control signals well and the image quality
is low. To illustrate this, we showcase the training process
of LoRETTA on the C2I task in Fig. 8. This may be because
of its non-zero initialization, which destroys the information
from the pre-trained model. As a comparison, our method,
which also adopts TR residual adaptation, works well for
these datasets.

C.4. Additional visualization results
We present more visualization results in Figs. 9 to 11.

D. Related work
Due to the space limit, we present a more comprehensive
review of related work here.

Text-to-image model personalization. Text-to-image
generative models have shown exceptional results in image
synthesis [10, 46, 49, 50, 53]. Given the various pre-trained
models available, many works aim to fine-tune these mod-
els for personalized datasets or tasks, such as subject-driven
generation and controllable generation. Gal et al. [12] pro-
pose learning given subjects via textual inversion, while
Ruiz et al. [52] fine-tune the whole model. ControlNet [68]
incorporates an additional network branch, which can learn
datasets of paired control signals and images. While Ruiz
et al. [52], Zhang et al. [68] have large numbers of trainable
parameters, Kumari et al. [26] show that fine-tuning the at-
tention layers alone is also effective for these tasks. More
recently, many works have focused on developing PEFT
methods for these attention layers and have shown promis-
ing results [3, 5, 7, 17, 18, 21, 47, 61, 66, 71, 75]. In partic-
ular, Zhuang et al. [75] propose time-varying adapters that
match the denoising process of diffusion models; this can
be an interesting direction to further improve our method.
There are also training-free approaches [51], which could
be slow at inference.

Parameter-efficient fine-tuning. PEFT has become a hot
topic with the emergence of large foundation models includ-

ing text-to-image models and large language models. Popu-
lar PEFT methods include Adapter [19], Prefix-tuning [30],
Prompt-tuning [28], low-rank adaptation [LoRA, 20], and
many of their variants. Adapter adds additional layers after
pretrained feed forward layers. Prompt-tuning introduces
learnable prompts for specific tasks. LoRA has become the
most popular PEFT method due to its simplicity and im-
pressive performance [11]. Many variants of LoRA have
been proposed [22, 23, 25, 31–33, 39, 43, 47, 69]. In par-
ticular, DoRA [31] proposes decomposing the pre-trained
weight into magnitude and direction, where vanilla LoRA is
applied to the direction. In this work, we show that DoRA
can also be connected to our work by using a diagonal trans-
form. OFT [47] applies a learnable orthogonal transform for
adaptation. However, for parameter efficiency, OFT adopts
block diagonal matrices, which are highly sparse. Subse-
quently, many methods aim to improve OFT by applying
more efficient dense transform structures, including Butter-
fly matrix [32], Given rotation [34], Householder reflection
[4, 67] and Kronecker product [71]. Our method adopts a
similar idea of using a transform, but we design a different
efficient dense matrix parameterization using tensor decom-
position. Some methods also share similarities with ours by
using pre-defined and fixed transforms on the pre-trained
weights to project onto some low-rank spaces [5, 13, 54].
There are also works aim to design memory-efficient full-
parameter fine-tuning/pre-training optimizers [33, 43, 72].
However, they do not provide light-weight adapters that can
be plugged into foundation models.

Tensor decomposition. TD is a classical tool in signal
processing and machine learning [9]. In particular, tensor-
train (TT) decomposition [42] and its extension, tensor-ring
(TR) decomposition [73], have shown exceptional results
in model compression, including MLP [40], CNN [14, 58],
RNN/LSTM [37, 44, 55, 64] and Transformer [35, 45]. Re-
cently, TDs have also been applied to fine-tuning tasks. Jie
and Deng [24] parameterize the Adapter layers using a TT
format and show ultra-parameter-efficiency in ViT adapta-
tion. Yang et al. [65] extend this idea to large language
model PEFT, and apply the TT format to both Adapters
and LoRA factors. Similarly, Anjum et al. [2] propose to
directly parameterize the adaptation using the TT format.
Chen et al. [8] adopt a quantum-inspired tensor network,
which is a generalization of the TT-Matrix (TTM) form.
While these works use similar TT/TR structures to our
model, they do not apply the transform adaptation. More-
over, we study a different initialization strategy for the TR
factors, which would be more stable, as we show in our ex-
periments.



Figure 8. Training process of LoRETTA on the C2I task.



Prompt: A photo of a teapot

Prompt: A photo of cube-shaped teapot

Prompt: A photo of a transparent teapot

LoRA DoRA BOFT ETHER+ Ours

Prompt: A dog2 playing a violin in sticker style

Prompt: A dog2 carved as a knight in wooden sculpture

Prompt: A photo of a dog2 as an astronaut in a space suit, 
walking on the surface of Mars

Input images

Figure 9. Qualitative comparison of the subject-driven generation results.



Prompt: A vase made of lego

Prompt: A photo of a transparent vase

Prompt: A vase featuring a design inspired by the Arsenal Football Club

LoRA DoRA BOFT ETHER+ Ours

Prompt: A cat gracefully leaping in origami style

Prompt: A cat sleeping on a sofa

Prompt: A side view of a cat in times square, looking up at 
the billboards

Input images

Figure 10. Qualitative comparison of the subject-driven generation results.



Prompt: A woman wearing glasses

LoRA DoRA BOFT ETHER+ TLoRA*Input images

Prompt: A man in a suit and tie

Prompt: A woman with long brown hair

Prompt: A shopping mall

Prompt: A small room with a bed and shelves

Prompt: A person walking down a street

Prompt: A cat in a toilet

Prompt: A bathroom

Prompt: A house in the countryside

TLoRA

Figure 11. Qualitative comparison of the subject-driven generation results.


