A Framework for Double-Blind Federated Adaptation of Foundation Models

Supplementary Material

A. Proof of Proposition 1

Proof of Proposition 1. Let P = A™'B,Q = B~'C, and
R = C'A, where P, Q, and R are known products de-
rived from matrices A, B, and C. Each of A, B, and C' is
a permutation matrix, defined by:

A B,CeP, ={X e {0,1}"":

©))
XTX =1,X1=1},

where PP, denotes the set of n X n permutation matrices,
X7 is the transpose of X, 1 is a vector of ones, and XT =
X1

Non-uniqueness of solutions: To recover A, B, and C
uniquely, we would need the products P, @, and R to
uniquely determine a single set of matrices (A, B,C).
However, for any valid solution (A, B,C) that satisfies
P=A"'B,Q=B"'C,and R = C~'A, we can con-
struct alternative solutions by applying a left multiplication
with any permutation matrix S € P,,. Define alternative
matrices A’ = SA, B’ = SB,and C’' = SC, then:

A7'B' = (SA)"!(SB)
=A'S"'SB (10)
=A'B=P,

and similarly, B'~'C’ = Q and C'"'A’ = R. Thus,
the products P, Q, and R are also satisfied by the set
(A’ B’,C"). Since there are n! possible choices for S,
there are n! distinct sets of matrices (A’, B’, C’) that sat-
isfy the products P, Q, and R.

Brute-force as an optimal attack strategy: Given the
non-uniqueness property above, an attacker aiming to re-
cover A, B, and C must resort to brute force, testing
all possible configurations of (A, B,C') that satisfy the
products (P,Q, R). The total number of combinations
of (A, B, C) the attacker would need to test is n! and for
n = 16, we need 16! ~ 2 - 1013 combinations.

O

B. Feature Similarity-based Attack

A potential attack strategy involves matching the (bg, by11)
pairs, with ¢ € [L — 1], based on their similarity (e.g., L2
distance). After clients decrypt the received permuted rep-
resentations by, they could attempt to identify approximate

MSE (b;, b>)

o f¥l6.3 565860647555
,..7.1 k0] 2.5 7.6 EER A
~-51 56K 4.4 5849@4.4
m-52 57 41EN5.5 4.7 [k 4.1
« ER) 73 69m49 6.7 JEEEN 615.0 462.3 569.9 FRER]
n-5.5056 4344583700142 F3%1336.8 PEERY 367.6 PEE)
¥ o7 5245 1.6/8.48 202.4 JKY 525.2
~-5960535153 58 69N PUIEIRICRIBCIE] .2 233.9 EZVW)
0 1 2 3 4 5 6 7

MSE (b1, b12)
REYAN 540.9 405.6 502.6 EREORE <107/
£ 232.0 265.7 208.6 [cEiivA 297.5 164.9
£219.1 106.4 |304.6 ‘ 238.1 211.7 261.9
£178.7 1291.5 193.5|256.1 227.2 173.5

509.5

.3

Figure 6. Heatmap visualization of the similarity (L2 distance) be-
tween corresponding block outputs or hidden representations: (i)
between block outputs by and bz, and (ii) between block outputs
bi: and bio. The X- and Y-axes represent the samples, with a
batch size of 8. An ideal outcome for the attacker would be a per-
fect minimal diagonal, indicating strong alignment between the
representations. While this is not fully observed in the plot, such
outcome would reduce the number of brute-force trials required,
as outlined in Proposition 1.

MSE (b3, bs)

pEeNI116.4 15.8 11.7 i1 12.6 10.6 :0010)
pEeN0]14.7 15.310.5 JERY 9.6 9.1
pIBY 0/ 5115.412.4594713.311.0 10.6

19.5pENFER] 0.9117.410.0 8.6 7.9

12.810.710.3

MSE (by, b1>)

20.2 16.011.8
16.2

7 65 43 210

0 1 2 3 4 5 6 7

Figure 7. Heatmap visualization of the similarity (L2 distance)
between non-consecutive block outputs or hidden representations:
(i) between block outputs by and bs, and (ii) between block out-
puts bg and b;2. The X- and Y-axes represent the samples, with a
batch size of 8.

nearest representations between the neighboring block out-
puts, thereby aiding in recovering individual permutation
matrices II,.

To demonstrate this, we provide Figure 6, which il-
lustrates that neighboring blocks exhibit similarity, mak-
ing it feasible to infer permutation mappings. However, if
clients receive randomly sampled blocks instead of sequen-
tial ones, the same attack strategy fails (see Figure 7). To
mitigate this risk, we introduce stochastic sampling of hid-
den representations/attention blocks in every forward pass.
This ensures that the permutation matrices are never fully
exposed, preventing adversaries from reconstructing them
(see Proposition 1).

Additionally, we illustrate the sampling probabilities of
transformer blocks under different strategies in Figure 8.
Specifically, we compare uniform sampling (included for il-
lustrative purposes), our proposed stochastic sampling strat-

Uniform Sampling

Stochastic Sampling (Fig. 4)

Stochastic Sampling (1 & L)

o
o

©
o
)

0.4

Sampling Probability
=}
[N}

o
<)

1 2 3 45 6 7 8 9 101112
Block Index

1 2 3 45 6 7 8 9 101112
Block Index

1 2 3 45 6 7 8 9 101112
Block Index

Figure 8. Visualization of the sampling probabilities for L = 12 transformer blocks under three different scenarios: (i) uniform random
sampling with probability 0.5, (ii) our proposed stochastic sampling strategy, and (iii) stochastic sampling constrained to include either the

first or last block.

egy depicted in Figure 5, and a constrained version of this
stochastic strategy where either the first or last transformer
block must always be sampled. The latter strategy ensures
meaningful local updates by guaranteeing non-zero input
entries for clients. Despite this constraint, the overall ex-
pected number of sampled blocks remains unchanged and
aligns with the formulation in Eq. 14. Also, the learnable
scaling parameter in each adapter layer (see Figure 3), de-
noted by «, addresses potential scaling issues that may arise
due to zeroed-out block outputs/hidden representations dur-
ing stochastic block sampling.

B.1. HE-Compatible Strategy

To maintain privacy while adhering to the computational
constraints of homomorphic encryption (HE), we employ
the following strategy:

— Non-selected blocks are set to zeros, ensuring they are not
used during the local learning.

— Due to limited multiplicative depth in HE, we still trans-
mit the non-selected blocks but introduce random noise
before sending them to clients.

— Clients decrypt, re-encrypt, and return the updates. The
server then subtracts the added noise before proceeding to
the next block, ensuring that adversaries cannot infer the
original representations.

This defense mechanism effectively counters feature
similarity-based attacks while maintaining the efficiency of
our privacy-preserving adaptation framework. A detailed
explanation of how sampling is done is provided in Section
4.3.2.

B.2. Complexity Analysis of the Sampling Strategy

Consider a sequence consisting of L consecutive blocks,
each assigned either a value of 1 (sampled) or 0 (not sam-
pled), according to the probabilistic rules depicted in Figure
5:

e The first block is sampled (assigned the value 1) with
probability 0.5 and not sampled (assigned 0) with proba-
bility 0.5.

* For each subsequent block ¢ > 2:

— If block ¢ — 1 was sampled, then block ¢ is determinis-
tically set to 0.
— If block ¢ — 1 was not sampled, then block ¢ is sam-
pled/not sampled with probability 0.5.
Let py denote the probability of block ¢ being sampled.
Formally, this probability can be expressed recursively as:
pe=0.5x%x(1—pe_1), withp; =0.5. (11

Expected Number of Sampled Blocks. Solving this re-

currence relation reveals an equilibrium behavior for large

L. Specifically, as L gets larger, p, converges to a stationary

probability p, satisfying:

p=0.5(1—p). (12)

Solving this yields the stationary probability p = % There-
fore, each block has approximately a % probability of being
sampled. For L blocks, the expected number of sampled
blocks S can be expressed as:

wl

L
E[S] = sz ~ 2 (13)
(=1

When the sampling is repeated for 7" times, the total ex-
pected number of sampled blocks is given by:

E[St] ~ T x g (14)

C. How Does the Distillation Work?

We adopt the transformer distillation approach [24], which
consists of two key phases: (i) transformer-layer distilla-
tion and (ii) prediction-layer distillation. For generality,

94_

S
S

—
N
rm

94_

Attention

Teacher model T Student model S

Figure 9. Schematic illustration of the layer-wise knowledge dis-
tillation (Equations 17 and 18).

let the original transformer model be referred to as the
teacher model (7) and the approximation-enabled trans-
former model as the student model (S). We assume that
both models share the same architecture but differ only
in their non-linear components (Softmax, GELU, Layer-
Norm). Further, we outline the primary sub-layers of the
transformer blocks:

* Attention. The attention function is formulated as fol-

lows:
_ QKT

N
followed by a softmax operation. We are specifically in-

terested in an un-normalized attention matrix A.
¢ Feed-forward network is formulated as follows:

A

15)

H(z) = GELU(zW; +b))Ws + by, (16)

In the first stage of distillation, we perform an attention-
based distillation (Eq. 15) and hidden representations based
distillation (Eq. 16). More precisely,

2
)

1 h
Lo=1 ; |AS — AT (17)

where h is the number of attention heads. And the distilla-
tion of the hidden representation is formulated as follows:

L,=|HS-HT|?, (18)

where the matrices H® and H” are hidden representations
of the respective models. For a detailed look, please re-
fer to Figure 9, which illustrates how layer-wise distillation
works. Then, the total loss of the first stage is simply de-
fined as:

L=Ly+ L. (19)

Further, we perform a prediction-layer distillation fol-
lowing the knowledge distillation approach of [19] by
matching logits and using the following objective function:

L, = Lop(28/1,27 /1), (20)

where z° and 27 are logit vectors produced by student and
teacher models, respectively. Lo g is a cross-entropy loss
and 7 is a temperature parameter to produce softer proba-
bility distributions over classes. We set 7 to 5 in all our
experiments. Finally, the final loss objective is defined as:

L.+ L > Stage I,

i g @)
L, > Stage II.

As outlined in the main paper, the total number of epochs is

set to 30, with 15 epochs allocated to each stage.

D. Additional Experimental Results
D.1. Baseline Approaches

In this section, we describe the baseline methods used for
comparison. Full fine-tuning involves updating all param-
eters of the pre-trained model by initializing them with
pre-trained weights and subsequently training them with
gradient updates. In federated experiments, this corre-
sponds to the standard FedAvg algorithm [40]. Linear
probing [4] fine-tunes only the classifier head while keep-
ing the backbone frozen. In federated experiments, only
the trainable parameters of the head are shared and av-
eraged. LoRA (Low-Rank Adaptation) [21] is a popular
parameter-efficient fine-tuning approach, freezing the origi-
nal weights while training additional low-rank matrices. Its
federated counterpart, the FedIT algorithm [65], applies Fe-
dAvg specifically to LoRA parameters. Adapter tuning
[20] involves inserting lightweight adapter layers between
self-attention (attention) and feed-forward modules, con-
nected via residual connections. Each adapter layer com-
prises two fully connected layers with biases, separated by
a nonlinearity (ReLU activation).

Datasets Methods Is double-blind? No. of params (M) Latency (ms) Memory (GB)
Full fine-tuning X 82.1096 (11247.89 x) 47.4 (3.14 x) 18.13
LoRA X 0.2886 (30.54x) 385 (2.55%) 15.73
CIFAR-10/SVHN Adapter tuning X 3.3933 (464.68x) 37.9 (2.51x) 14.72
Linear probing v 0.0073 (1.00 x) 15.1 (1.00 x) 9.39
BlindFed v 0.2536 (34.74 x) 15.7 (1.04 x) 9.08
Full fine-tuning X 82.1756 (1121.09 x) 47.4 (3.03 x) 18.13
LoRA X 0.3546 (4.84x) 384 (2.45x%) 16.42
CIFAR-100 Adapter tuning X 3.4593 (47.19%x) 37.8 (2.41x) 15.41
Linear probing v 0.0733 (1.00 x) 15.7 (1.00 x) 9.40
BlindFed v 0.3196 (4.36 x) 163 (1.04 x) 9.08
Full fine-tuning X 82.1082 (13916.64 x) 51.2 (2.54 x) 17.32
LoRA X 0.2871 (48.66x) 385 (1.91x) 15.73
Fed-ISIC2019 Adapter tuning X 3.3919 (574.89x) 379 (1.88x) 14.72
Linear probing v 0.0059 (1.00 x) 20.2 (1.00 x) 8.71
BlindFed v 0.2522 (42.75 x) 21.1 (1.05 x) 8.39

Table 4. Comparison of the efficiency of our method with baseline approaches in terms of the number of parameters, latency and the mem-
ory requirement across four datasets (CIFAR-10/SVHN, CIFAR-100, and Fed-ISIC2019). Latency is measured per data point and includes
both forward and backward passes. The last column (Memory (GB)) indicates the GPU memory required to conduct the experiment.

No. of Params (M) (log)

Latency (ms)

Memory (GB)

102

10t

100

107t

1072

CIFAR-10 / SVHN CIFAR-100 Fed-I1SIC2019

mmm Full fine-tuning

0
CIFAR-10 / SVHN CIFAR-100

B LoRA mmm Adapter tuning

15

10

Fed-I1SIC2019 0CIFAR—lO /SVHN CIFAR-100 Fed-ISIC2019

Linear probing I BlindFed

Figure 10. Comparison of the efficiency of different adaptation methods in terms of the number of parameters, latency, and memory
usage across three datasets: CIFAR-10/SVHN, CIFAR-100, and Fed-ISIC2019. Each plot presents one of the three key metrics, with bars
grouped by dataset and color-coded by method. Latency is measured per data point and includes both forward and backward passes. The
memory column indicates the GPU memory required for training. Our proposed BlindFed method achieves a favorable balance between

efficiency and performance. The results are derived from Table 4.

D.2. Main Results

Table 4 provides a comprehensive comparison of our
method against several baseline approaches, including Full
fine-tuning, LoRA, Adapter tuning, and Linear probing,
across multiple datasets. This table extends the insights pro-
vided in Tables | and 2, focusing on three key aspects: the
number of trainable parameters, latency, and GPU mem-
ory requirements. These results offer a deeper understand-
ing of the trade-offs involved in adapting foundation mod-
els for federated learning while maintaining computational
feasibility. As observed in the table, full fine-tuning con-
sistently requires a significantly larger number of trainable
parameters compared to all other methods, leading to sub-

stantially higher memory consumption and latency. In con-
trast, our method remains efficient, exhibiting a parameter
count close to that of LoORA while requiring even less GPU
memory.

Notably, across all datasets, our approach remains com-
petitive with linear probing in terms of latency while requir-
ing only a marginal increase in parameter storage. Specifi-
cally, in the CIFAR-10/SVHN setting, our method achieves
near-optimal latency, operating at only a 4% increase over
linear probing, despite introducing a significantly greater
degree of adaptability. The reduction in trainable param-
eters compared to LoRA and Adapter tuning further high-
lights the effectiveness of our approach in maintaining

Teacher Model 7 (Tiny-Imagenet)

>
E 0.90 100
> —_
g g
< = 10-1
5 0.88 P 10
2 3
© —
=2 10 2
@ 0.86
0 10 20 30 0 10 20 30

Epochs Epochs

Figure 11. Performance plot of fine-tuning the teacher model on the
public auxiliary dataset Dq.o (Tiny-Imagenet). The left plot shows
the balanced accuracy, while the right presents the loss performance
(log scale).

Teacher Model 7 (Fed-ISIC2019)

>‘0.9 100
o

e

§ 0.8 ,g» 10—1
< =

Lo} 0.7 n 102
Q w0

(%} o

c -
506 10-3
©

faa]

0.5 0 20 40 0 20 40

Epochs Epochs

Figure 13. Performance plot of fine-tuning the teacher model on
the Fed-ISIC2019 dataset with center=0. The plot on the left shows
the balanced accuracy, while the plot on the right presents the loss
performance (in a logarithmic scale).

model compactness without sacrificing computational effi-
ciency.

From a resource perspective, the memory footprint of
our method remains consistently low (due to the elimi-
nation of the need for backpropagation through the back-
bone), demonstrating an advantage over more conventional
fine-tuning techniques. While full fine-tuning incurs nearly
twice the memory cost, our method achieves comparable
memory usage to linear probing while outperforming LoRA
and Adapter tuning in terms of both efficiency and adapt-
ability.

These findings underscore the scalability and practical-
ity of our method in federated learning applications. By
achieving an optimal balance between parameter efficiency,
computational cost, and adaptability, our approach effec-
tively mitigates the overhead typically associated with fine-
tuning. Moreover, it demonstrates compatibility with ho-
momorphic encryption techniques, achieving lower compu-
tational costs compared to conventional fine-tuning meth-
ods.

Student Model S (Tiny-Imagenet)

>0.8
o 103
§ 0.6 ’8*,
<< = 1
0.4 w 10
] o
5 0.2 ~ 107
©
0.0
0 10 20 30 0 10 20 30
Epochs Epochs

Figure 12. Performance plot of the distillation process on the Tiny-
Imagenet dataset. The left plot depicts the balanced accuracy across
both stages, while the right shows the loss performance, with the
dashed line indicating the beginning of Stage 2 distillation (Eq. 21).

Student Model s (Fed-I1SIC2019)

-~ 10°
0 0.8
o
=] —~ 103
kel n 10
@ I
& 0.4 3
s -1
502 10
0 20 40 0 20 40

Epochs Epochs

Figure 14. Performance plot of the distillation process on the Fed-
ISIC2019 dataset with center=0. The plot on the left depicts the
balanced accuracy across both stages, while the right plot shows the
loss performance, with the dashed line indicating the beginning of
Stage 2 distillation (Eq. 21).

D.3. Distillation Results

Following the findings discussed in Section C, we present
performance plots for two key processes: (i) fine-tuning the
teacher model 7 on a public auxiliary dataset Dy, and (ii)
distilling the student model S on the same dataset Dy, us-
ing the trained teacher model 7. Figure 11 illustrates the
performance metrics — balanced accuracy and loss — of
the fine-tuning process on the Tiny-ImageNet dataset. Af-
ter completing this training, we proceed with distillation for
the approximation-enabled student model. Figure 12 shows
the performance plot for the distillation process on the Tiny-
ImageNet dataset. In the loss behavior plot (on the right),
a dashed line marks the start of the second stage. During
the first stage, as described in Eq. 21, transformer-layer dis-
tillation is performed (showing a higher value due to the
high-dimensional attention and hidden representation ma-
trices). Then, the second-stage distillation follows, which is
a prediction-layer distillation [19]. The learning rate sched-
uler is employed at epochs 15 and 25 with a decay factor
of 0.1. Figures 13 and 14 present analogous performance
plots for the Fed-ISIC2019 dataset, using center=0 as the
public auxiliary dataset D,,,. The learning rate scheduler

Degree d | Memory (GB) Latency (s) Attentionloss (£,) Representationloss (£,) One-epoch accuracy (%)
2 16.82 0.41 44.37 915.46 75.17
4 19.68 0.48 38.31 748.62 83.85
6 22.54 0.52 33.92 655.26 84.36
8 25.39 0.58 30.91 603.53 84.47
10 28.99 0.62 28.17 573.54 84.16
16 36.83 0.81 20.31 527.95 85.08
oo (True) ‘ 15.36 0.35 13.59 508.64 86.91

Table 5. Softmax approximation results. Latency is computed per a batch of samples, when batch size is set to 8. One-epoch accuracy
refers to the accuracy we obtain when performing one full pass over the data for only one epoch. This experiment is carried on the Fed-

ISIC2019(center=0) dataset.

is employed at epochs 20 and 40 with a decay factor of 0.1.

D.4. Approximation Results

In this section, we revisit and elaborate on the approxima-
tions introduced in the main paper.

Softmax. Given a vector z € R™ with components z;, the
softmax function is defined as:

e

22‘;1 e

where e* denotes the exponential function applied to the
component z;. The goal is to approximate the softmax func-
tion using a polynomial approximation of the exponential
function, P, (z;), and to estimate the maximum deviation
in softmax values due to this approximation.

The Taylor series provides a polynomial approximation of
e® around x = 0 up to d terms:

softmax(z;) =

d xk
e’ ~ Py(z) = Z T
k=0

The error bound of this approximation is given by the re-
mainder term R, (), expressed as:

et d+1

for some ¢ between 0 and x, indicating the error in approx-
imating e® with P;(x).

Softmax approximation results. Table 5 presents softmax
approximations while keeping all other non-linear compo-
nents fixed. Using Eq. 3, we vary the polynomial degree d
for the approximation during a single epoch of knowledge
distillation (Section C, Stage I) and compare the results to
the true softmax. The table reports key performance met-
rics, including attention loss £, (Eq. 17), representation
loss L, (Eq. 18), and accuracy. Additionally, it provides ef-
ficiency metrics such as GPU memory usage and latency for

Algorithm 1 Inverse algorithm

Input: 0 < z < 2, degreed € N
Output: an approximation of 1/z (Eq. 5)

apg—2—=x
bo —1—=z
forn <+ Otod—1do
bn+1 — bi
Ap41 < Qp - (1 + bn+1)
end for
return a

A A S

processing a batch of samples. Balancing the trade-offs be-
tween time, memory requirements, and performance drop,
we chose d = 6 for all experiments.

Inverse. Since homomorphic encryption supports only ad-
dition and multiplication operations, it cannot perform di-
vision directly. To make it work in the encryption domain,
we approximate the inverse function. The details of this
approximation are presented in Eq. 5, and the correspond-
ing algorithm is outlined in Algorithm 1. To ensure that
the value of z falls within the range (0,2), we determine
the maximum possible value of x in the plaintext domain
and scale it accordingly in the encrypted domain using this
maximum value.

Inverse approximation results. Table 6 summarizes the
results of inverse function approximations, keeping all other
non-linear components fixed and utilizing the softmax ap-
proximation with a 6th-degree polynomial. Following Al-
gorithm | and Eq. 5, we varied the polynomial degree d un-
der the same conditions described above. While the mem-
ory and time requirements remain nearly identical across
different values of d, the focus is on performance metrics.
Based on these considerations, we selected d = 7, as it
closely approximates the true inverse in terms of losses and
accuracy.

Degree d \ Memory (GB) Latency (ms)

Attention loss (£,)

Representation loss (£;,) One-epoch accuracy (%)

2 22.42 118.70 61.50 1698.19 57.87
4 22.44 119.64 57.42 1534.97 76.64
6 22.45 120.27 45.67 1352.91 81.77
7 22.46 120.43 44.11 1334.32 82.96
8 22.47 120.97 45.10 1352.55 83.23
10 22.48 121.70 43.23 1332.62 80.61
12 22.50 122.98 40.40 1302.41 82.55
16 22.53 124.76 38.86 1292.36 83.04
oo (True) ‘ 22.46 10.57 38.77 1289.71 83.15

Table 6. Approximation of the reciprocal (inverse function). Latency is computed per a batch of samples (aggregate over L transformer
blocks), when batch size is set to 8. One-epoch accuracy refers to the accuracy we obtain when performing one full pass over the data for
only one epoch. This experiment is carried on the Fed-ISIC2019 (center=0) dataset.

Time taken to encrypt one sample 1062 ms
Time taken to decrypt one sample 168.7 ms
Time taken to encrypt a batch of 8 samples 4.65 s
Time taken to decrypt a batch of 8 samples 231.59 ms
Ciphertext size of one sample 17.33 MB
Plaintext size of one sample 6.21 MB
Encrypted inference time 136 s

Table 7. Computational and memory overhead for encrypted infer-
ence and encryption using FHE with the Tile Tensors framework.
Results are presented per transformer block, evaluated at a 128-bit
security level, including approximations for Softmax, inverse, and
GELU operations.

D.5. Homomorphic Encryption Results

For the implementation of fully homomorphic encryption
(FHE), we utilize the Tile Tensors framework [2, 8] on
an NVIDIA A100-PCIE-40GB machine with 250 GB of
available RAM. Table 7 summarizes the computational and
memory requirements for our experiments, all evaluated at
the standard 128-bit security level. The results presented in
the table correspond to the encryption of one transformer
block, accounting for approximations of operations such
as Softmax, inverse, and GELU. Specifically, we report
both the encrypted inference time and ciphertext memory
size. The encrypted inference is executed on a powerful
server, and the required time determines its computational
complexity and latency, and the ciphertext size directly de-
termines the communication overhead within the federated
setting.

The encryption of a single data sample with a dimension
(577,768) takes approximately 1062 ms, while decrypting
the same sample takes significantly less time, around 168.7
ms, highlighting the asymmetry in encryption and decryp-
tion costs. Batch processing improves efficiency, as en-
crypting 8 samples takes 4.65 seconds, whereas decryption

for the same sized batch completes in 231.59 ms. The ci-
phertext size of a single encrypted sample expands to 17.33
MB, larger than its plaintext counterpart (6.21 MB), indicat-
ing the additional communication overhead introduced by
encryption. Moreover, encrypted inference for one trans-
former block requires approximately 136 seconds on the
specified hardware, highlighting the computational over-
head of inference under encryption. Nonetheless, this in-
ference time could be substantially reduced with optimized
cryptographic primitives, more powerful server infrastruc-
ture, and GPU acceleration [25, 27, 44, 60].
Computational Overhead. As with any cryptographic
approach for privacy-preserving ML, BlindFed introduces
non-negligible computational costs. However, it is de-
signed to minimize the burden on thin clients by offload-
ing most computations to a powerful server (Table 7). On
the client side, only encryption/decryption of intermediate
representations and a plaintext parallel adapter update are
performed. On commodity CPUs, encrypting (decrypting)
a single sample takes 1.06 s (0.17s), and encrypting (de-
crypting) 8 samples in batch takes 4.7 s (0.23 s), requiring
less than 1 GB of RAM. The server handles the expensive
encrypted inference for each ViT block under CKKS, taking
roughly 136 s per sample (amortized) and requiring more
than 22 GB of memory. However, as mentioned above,
these operations are embarrassingly parallel across clients,
and GPU-accelerated CKKS implementations can further
reduce the server-side inference time by over 10x.

	Proof of Proposition 1
	Feature Similarity-based Attack
	HE-Compatible Strategy
	Complexity Analysis of the Sampling Strategy

	How Does the Distillation Work?
	Additional Experimental Results
	Baseline Approaches
	Main Results
	Distillation Results
	Approximation Results
	Homomorphic Encryption Results

