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1. Dual-camera MS-RGB Dataset
The proposed dataset provides high-quality image quadru-
plets consisting of mosaiced RGB and MS images alongside
their respective demosaiced ground truths. These images
are collected using a custom-built imaging system designed
to simulate an asymmetric dual-camera setup, as described
in Sec. 4.1 of the main paper.

Our system employs a Sony Alpha 1 camera with a RGB
Bayer color filter array (CFA) sensor, featured with pixel-
shift mode, to capture accurate ground-truth demosaiced
RGB and MS images through sub-pixel shifts. The camera,
mounted on a linear stage actuator, captures staged scenes in
an illumination box from different positions while maintain-
ing a fixed relative baseline between the RGB and MS cap-
tures (illustrated in Fig. 1). RGB acquisition is performed
by configuring the illumination box to simulate the CIE D65
daylight illuminant, while MS acquisition is achieved by
simulating a multispectral filter array (MSFA) through cap-
turing the same scene under varying light sources within the
box. After capturing the demosaiced RGB and MS images,
further processing generates the mosaiced images. This in-
volves synthesizing noise to replicate realistic sensor condi-
tions and applying mosaic patterns using a 2×2 Bayer CFA
for RGB images and a 4×4 MSFA for MS images.

1.1. 16-Band MS Image Acquisition
For capturing MS image acquisition, our imaging system
simulates a total of 21 multispectral response functions by
combining the CFA response functions of the camera with
the spectral power distributions (SPDs) of varying light
sources provided by the illumination box. The illumination
box provides seven primary wavelengths, ranging from 380
nm to 760 nm, which can be combined in various ways to
create customizable light sources. By leveraging the config-
urable illumination feature provided by the box, the system
captures the same scene seven times, each under a different
wavelength combination, resulting in a 21-channel MS im-
age (7 wavelength combinations × 3 RGB channels). This
is then reduced to a 16-channel MS image by discarding 5

Code and data are available at https://ms-demosaic.github.io/
∗These authors contributed equally to this work.

spectral channels with the least information.
Fig. 2 illustrates the channel selection process for cre-

ating 16-channel MS images. Using an RGB camera and a
configurable illumination box, we simulate 21 multispectral
response functions (Fig. 2a). The response functions of the
RGB CFA camera, denoted as Ci

rgb(x, γ), define the sensi-
tivity of the red, green, and blue channels across the visible
wavelength range γ. The illumination box provides spectral
power distributions (SPDs), Lj(γ), corresponding to seven
distinct wavelength bands. The RGB CFA response func-
tions are calibrated using camSPECS V2, which captures
images of several monochromatic light sources at different
wavelengths and measures the output intensities for each
channel. These measured values are compared against the
known SPD of the light source to determine the spectral
sensitivity of each CFA channel. For the SPDs of the il-
lumination box, we use data provided by the manufacturer
(Telelumen Octa Light Player).

The multispectral responses are derived by combining
the RGB response functions with the SPDs of the box:

Ck
ms(x, γ) = Ci

rgb(x, γ)L
j(γ), ∀i∈[1,2,3], j∈[1,2,...,7]. (1)

This results in a total of 21 response functions (i.e., k ∈
[1, 2, . . . , 21]), representing all combinations of RGB chan-
nels and illumination SPDs.

To reduce the 21 channels to 16, we consider the area of
the response functions and select filter responses that are
distributed across the visible spectrum. Specifically, we
compute the integral of each response function Ck

ms(x, γ)
over the visible range γ, which quantifies the spectral con-
tribution of each channel. Based on these integrals, we se-
lect the top 12 channels with the largest areas. For the re-
maining 8 channels, which have smaller spectral contribu-
tions, we heuristically choose 4 channels to ensure coverage
across different wavelengths. The final 16 response func-
tions, highlighted in red in Fig. 2a, are mapped to the MSFA
grid to create spatially multiplexed MS images (Fig. 2b-c).
These MS images are then combined to construct the high-
quality MS demosaiced image, which serves as a key com-
ponent of the proposed dual-camera RGB-MS dataset.
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Figure 1. Overview of the data capturing pipeline: The system uses a Sony Alpha 1 camera with an RGB Bayer CFA sensor and pixel-
shift mode to capture high-resolution ground-truth RGB and multispectral (MS) images via sub-pixel shifts. The camera, mounted on a
linear stage actuator, captures staged scenes from different positions while maintaining a fixed baseline. RGB images are acquired in an
illumination box simulating CIE D65 daylight, while MS images use a multispectral filter array (MSFA) under varied lighting. The dataset
includes 502 quadruplets from 28 challenging scenes, featuring diverse staged setups.
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(a) Illustration of multispectral response function simulation.
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Figure 2. Illustration of 16-channel MS image acquisition in our imaging system. (a) shows the 4×4 MSFA simulation using and RGB
CFA camera (first column) and varying light sources provided by a configurable illumination box (top row). Given the RGB response
function Ci

rgb(x, γ) of the camera and 7 distinct SPDs Lj(γ) provided by configurable illumination box, we simulate 21 multispectral
response functions as Ck

ms = Ci
rgb(x, γ)L

j(γ) for each i ∈ [1, 2, 3] and j ∈ [1, 2, ..., 7]. From these 21 response functions, 16 are
selected to simulate a 4×4 MSFA (highlighted by red boxes). (b-c) are examples of MS images of different scenes captured using the
multispactral response functions. The selected 16-channel images (highlighted by red boxes) are used to construct the ground-truth MS
demosaic image ÎMS in the proposed dual-camera RGB-MS dataset.

1.2. Noise Calibration
Given demosaiced RGB and MS images captured by our
imaging system, we generate their corresponding mosaic
images. To mitigate noise caused by the small pixel size of
the sensor, we first downsample the pixelshift demosaiced
images from 5640×8760 to 1440×2160. These downsam-
pled clean images serve as our demosaiced ground-truth in
our proposed dataset. Next, we apply synthetic noise and
then mosaic the images using a 2×2 Bayer CFA for RGB
and a 4×4 MSFA for MS to obtain the final mosaic images.

To simulate realistic sensor noise, we use a Poisson-
Gaussian noise model [5, 10, 11]. Given the clean image
I∈RH×W×N , noisy image Y ∈RH×W×N is modeled as:

Yn(x) = In(x) + ϵn(In(x)), (2)

where n denotes the channel index and ϵn(In(x)) repre-
sents the noise at pixel location x. The noise distribution is
calibrated using heteroscedastic modeling, which accounts
for the per-pixel signal dependency of photon noise. Math-
ematically:

ϵn(In(x)) ∼ N (0, σ2
n(In(x))),where (3)

σ2
n(In(x)) = β1

nIn(x) + β2
n. (4)

Here, σ2
n(In(x)) represents the intensity-dependent noise

variance. The parameter β1
n models photon shot noise, pro-

portional to the pixel intensity In(x), while β2
n accounts for

intensity-independent electronic read noise.

Following the procedure outlined in [5, 10], we calibrate
the noise parameters for each RGB CFA channel of the
Sony Alpha 1 camera. To this end, we capture images of
the X-Rite color chart under different exposures and ISO
levels, and fit a linear model to the scatter plot of the cal-
culated mean and variance pairs of pixel intensities at all
homogeneous patches of the color chart images. This linear
fit describes the heteroscedastic noise variance as a func-
tion of pixel intensity, determined separately for each color
channel at different ISO values. In practice, our pipeline
synthesizes noise using β1

n and β2
n calibrated at ISO 400.

Nonetheless, it is worth mentioning that noise synthesis can
be easily extended to other ISO levels, as mosaic images
can be regenerated using the high-quality ground-truth RGB
and MS demosaiced images in our dataset.

Once β1
n and β2

n are calibrated for the camera, we ap-
ply the noise to the clean RGB and MS demosaiced images
captured by our system, based on their spectral channel and
intensity value. Note that the noise model calibrated for
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Figure 3. Qualitative analysis of the Spectral Alignment Layer
(SAL). The figure compares results without spectral alignment
offsets (SAL w/o ∆i, top row) and with the offsets (SAL, bottom
row). Columns represent the per-pixel contribution of RGB guid-
ance, the area of contribution, and the reconstructed MS demo-
saiced output. The results indicate that SAL enhances the effec-
tiveness of RGB guidance in reconstructing accurate MS images.
The ground-truth MS demosaiced image is shown on the far right.

the RGB CFA is directly applicable to simulate MS images,
which are simulated by combining RGB channel responses
Crgb(x, γ) with varying SPDs Lj(γ) from the illumination
box (Eq. (1)). The noise variance depends only on the pixel
intensity I(x), which aggregates the contributions of SPDs
through the image formation process (Eqs. (11) and (12) in
the main paper). While SPDs can indirectly influence I(x),
the noise model itself is calibrated based on intensity and in-
trinsic sensor characteristics, making it agnostic to specific
SPD. As such, the calibrated noise model remains valid for
simulated MS images, ensuring consistency in noise syn-
thesis regardless of variations in the illuminant or spectral
composition, as long as the pixel intensities are preserved.

1.3. Color Conversion Matrix Calibration
To enable cross-spectral alignment in our MS demosaicing
framework (Sec. 3.2 of the main paper), our dataset includes
a pre-calibrated MS-to-RGB color conversion matrix. This
matrix converts the MS image into RGB color space, ensur-
ing spectral compatibility between the MS and RGB images
during geometric alignment. The matrix is calibrated using
RGB and MS images of the X-Rite Digital-SG color chart,
which contains 140 color patches.

The calibration process extracts average patch intensi-
ties, resulting in two matrices: A ∈ R140×16, represent-
ing the multispectral values, and B ∈ R140×3, representing
the RGB values. The color conversion matrix C ∈ R16×3,
which maps 16-channel MS to 3-channel RGB values, is
computed using least-squares optimization:

C = argmin
C

∥A× C −B∥2. (5)

The resulting conversion matrix C is crucial in cross-
spectral disparity estimation (Eq. (3) in the main paper),

(b) MCAN (c) MCAN+Ours (d) GT(a) HSIFN

Figure 4. Qualitative comparison of RGB-guided MS demosaic-
ing on the HS dataset [7]. Trained solely on our dataset, MCAN +
Ours recovers sharper spatial details and cleaner spectral content
than MCAN and HSIFN, demonstrating the generalization capa-
bility of our method across varying MS imaging conditions.

where it transforms the MS image into the RGB color space
before disparity estimation, enabling geometric alignment
between MS and RGB images in the proposed framework.

2. Analysis on MS Demosaicing Framework
2.1. Generalization
While our method is primarily trained and evaluated on our
large scale dataset—due to the availability of paired RGB-
MS mosaics with high-fidelity GTs—we also conducted
cross-dataset experiments on the HS dataset [7], which con-
tains 60 HS-HS image pairs. Although it lacks raw mosaics,
we simulate MS and RGB mosaics by projecting the de-
mosaiced HS images onto our MSFA and CFA spectral re-
sponse functions. This enables compatibility but introduces
a domain gap due to differences in sensor characteristics.
Simulated MS/RGB images can deviate from real sensor
responses due to limitations in HS data precision, spec-
tral response calibration, sensor nonlinearities, and noise
characteristics [1]. Despite these challenges, our model
generalizes well: MCAN + Ours achieves 42.48dB PSNR
(24.03M, 2.66T MACs), outperforming MCAN (39.40dB,
5.24M, 0.91T) and the high-capacity HSIFN (40.27dB,
90.21M, 18.79T), demonstrating the effectiveness of our fu-
sion strategy. Fig. 4 illustrates the qualitative advantages of
our method.

2.2. Effect of Spectral Alignment Layer (SAL)
We analyze the effectiveness of the Spectral Alignment
Layer (SAL) in enhancing MS image demosaicing by
leveraging RGB guidance. Figure 3 illustrates the contri-
bution of RGB guidance to reconstructing a target MS re-
gion, comparing results with and without SAL. The top
row shows results without the spectral alignment offsets ∆i
(Eq. (7) in the main paper), while the bottom row includes
the proposed SAL (the last row in the table). The two
models provides multi-scale RGB features f ′RGB

l to the fu-
sion network F (Eq. (5) in the main paper). The per-pixel
contribution and the area of contribution indicate that SAL
enables more effective integration of RGB guidance, lead-
ing to improved MS demosaicing quality, as reflected in the
sharper and more accurate output.



Table 1 presents quantitative results in terms of the Dif-
fusion Index (DI) [6], which measures the range of con-
tributed RGB pixels during MS demosaicing. Higher DI
scores indicate better utilization of RGB guidance. Re-
sults show that incorporating SAL consistently improves
DI across all MS channels, with an average gain of 2.138,
demonstrating the importance of spectral alignment in
achieving higher fidelity MS reconstructions.

2.3. Optical Flow Visualization
The scenes in our dataset have objects at various depths and
thus we utilize optical flow to perform alignment within our
cross-spectral disparity estimation module. In Figure 5, we
visualize the optical flow field that warps the RGB features
into alignment with the intermediate MS features. We vi-
sualize the intermediate MS image and demosaiced RGB
image and the optical flow computed. The warped RGB vi-
sualization is a simplification of our SAL, which warps fea-
tures across multiple scales from the RGB image. The opti-
cal flow between all images should be in the same direction
since the cameras are separated by a fixed distance. How-
ever, the magnitude of the shift varies with scene depth–
closer objects exhibit larger flow values, while farther ob-
jects have smaller flow values.

2.4. RGB to MS Reconstruction
In our experiments (Sec. 5 of the main paper), we demon-
strate the effectiveness of using the RGB mosaic as guid-
ance for MS restoration. However, a natural question arises:
can we directly reconstruct the MS image from the RGB
mosaic alone, bypassing the need for the MS mosaic? To
verify our approach, we assess our model against the earlier
RGB-to-HS image reconstruction model, MSTPPrgb2ms

1× [2],
which is adapted to process RGB mosaic images and pro-
duce demosaiced MS images for the 1× MS demosaicing
task (i.e., Scenario 1 in Sec. 5.2 of the main paper).

For our method, we prepare three model variants. The
first variant, NAFNetrgb2ms

1× , uses NAFNet [3] as the back-
bone MS restoration network DMS . It takes only the RGB
mosaic image IRGB

2×2 as input and directly produces the
MS demosaiced image IMS as output. The second vari-
ant, NAFNet1×, also uses NAFNet as the backbone but
instead takes the MS mosaic IMS

4×4 as input to reconstruct
IMS . The third variant, NAFNet1× + Ours, integrates our
proposed modules to leverage RGB guidance for MS de-
mosaicing. These modules include the RGB demosaicing
network DRGB (Eq. (2) in the main paper) and the cross-
spectral fusion module (Sec. 3.2 of the main paper).

For training, MSTPPrgb2ms
1× and our first model variant,

NAFNetrgb2ms
1× , are trained using RGB mosaic images IRGB

2×2 ,
whereas our second model variant, NAFNet1×, is trained to
handle MS mosaic images IMS

4×4. The training process em-
ploys L2 loss between predicted MS demosaic images with

Target
MS channel

DI [6] w.r.t. target MS channel (↑)
Gain

SAL w/o ∆i SAL

1 9.035 11.22 2.185
2 8.500 9.976 1.476
3 8.962 8.964 0.002
4 8.606 9.753 1.146
5 8.757 10.63 1.874
6 7.388 9.518 2.130
7 7.296 9.103 1.807
8 10.04 10.12 0.088
9 8.203 9.861 1.658

10 8.728 9.989 1.260
11 9.215 12.31 3.095
12 8.049 9.033 0.984
13 7.823 8.094 0.270
14 7.208 8.310 1.102
15 8.012 9.837 1.825
16 8.487 10.77 2.283

DI w.r.t all
MS channels

7.373 9.511 2.138

Table 1. Quantitative results for 1× MS demosaicing, showing
the effect of SAL in terms of the Diffusion Index (DI) [6]. The DI
measures the range of involved RGB pixels during MS restoration.
The reported values represent the average Diffusion Index (DI),
calculated by selecting two random target regions from each of
the 103 test images in the proposed RGB-MS dataset, resulting in
a total of 206 target regions.

the ground-truth ÎMS (Eq. (8) of the main paper). Note that
the IRGB

2×2 images are geometrically aligned with ground-
truth MS images, as they are captured under CIE D65 day-
light illumination from the same camera position as ÎMS .
The third variant, NAFNet1× + Ours, follows the full train-
ing pipeline outlined in Section 3.3 of the main paper, which
incorporates RGB guidance through fusion to improve MS
restoration.

Table 2 summarizes the results. The table highlights
the clear advantage of using the MS mosaic input for MS
reconstruction (first and second vs. third rows of the ta-
ble). Moreover, providing RGB guidance with our pro-
posed modules achieves the best MS restoration perfor-
mance (fourth row), as the high-fidelity details from the
RGB mosaic are effectively fused during MS restoration.

We also compare MSTPPrgb2ms
1× and NAFNetrgb2ms

1× with
NAFSR4× [4], a variant of NAFNet designed for super-
resolution and trained for the 4× MS demosaicing task,
which reconstructs MS images from 4× downsampled
MS mosaics (Scenario 2 in Sec. 5.2 of the main pa-
per). As expected, MSTPPrgb2ms

1× and NAFNetrgb2ms
1× out-

perform NAFSR4× across all metrics, as the latter relies
on lower-resolution inputs. However, when NAFSR4× is
combined with our proposed modules (last row of Table 2),
it achieves competitive PSNR and SSIM scores compared
to NAFNetrgb2ms

1× , while significantly improving the SAM
score, which quantifies spectral fidelity. This demonstrates



(a) RGB Demosaiced (b) Intermediate MS Demosaiced        (c) Optical Flow                         (d) Warped RGB

Figure 5. Visualization of optical flow and warping on various scenes in our test dataset. In the first two columns, we visualize the
demosaiced RGB and the intermediate MS image (converted to the sRGB color space using the color conversion matrix C (Eq. (5)) and
camera metadata, with CIE D65 as the reference white point), that are used to compute the flow. In the last two columns, we visualize the
optical flow and the RGB image backwards warped into alignment with the MS image. Note that we visualize the warped RGB image, but
in practice our SAL warps features across multiple scales.



Model PSNR↑ SSIM↑ SAM↓ Params
(MB)

MACs
(T)

MSTPPrgb2ms
1× [2] 37.96 0.9746 4.430 85.81 12.36

NAFNetrgb2ms
1× 37.94 0.9734 4.370 111.25 0.78

NAFNet1× [3] 40.89 0.9766 2.604 111.25 0.78
NAFNet1× + Ours 41.92 0.9811 2.422 130.03 2.53

NAFSR4× [4] 32.98 0.9173 4.736 59.19 2.66
NAFSR4× + Ours 37.67 0.9641 3.576 77.98 4.41

Table 2. Quantitative comparison for MS demosaicing.

the efficacy of the proposed RGB-guided MS restoration
scheme, even in challenging super-resolution settings.

2.5. RGB Demosaicing using MS Reference
While the primary focus of this work is on leveraging RGB
guidance for MS restoration tasks in dual-camera setups
with RGB and MS sensors, the complementary nature of the
MS sensor motivates exploring the inverse scenario: lever-
aging MS guidance to enhance RGB demosaicing. Despite
the lower spatial fidelity of MS mosaics due to their inherent
low-resolution nature, they can potentially capture spectral
details that cannot be captured by the RGB CFA sensor [12].
Furthermore, MS sensor provide richer spectral diversity,
which can be utilized during RGB demosaicing tasks for
reconstructing accurate colors [9, 14]. Our proposed frame-
work and dual-camera RGB-MS dataset are well-suited for
extending to this task, demonstrating their flexibility in ad-
dressing different restoration scenarios.

To validate this idea, we adapt our proposed MS demo-
saicing framework by prioritizing RGB restoration in the
fusion stage (Sec. 3.2 of the main paper). Specifically, the
demosaiced RGB image I ′RGB is used as the primary in-
put to the fusion network F , while the intermediate multi-
scale MS feature map f ′MS

l is refined by the spectral align-
ment layer (SAL) and provided as auxiliary MS guidance
to F . This adjustment allows the fusion network to generate
enhanced RGB demosaiced image IRGB by leveraging the
spectral diversity of the MS features.

We evaluate the effectiveness of MS-guided RGB demo-
saicing by comparing three model variants. The baseline
model, NAFNet [3], processes only RGB mosaic images
IRGB
2×2 without MS guidance. To ensure a fair comparison,

we also evaluate a capacity-increased version, NAFNet-L.
Finally, the proposed method, NAFNet+Ours, incorporates
MS guidance during the fusion stage, integrating f ′MS

l to
enhance RGB reconstruction. All models are trained using
the RGB demosaicing loss (Eq. (9) in the main paper) on
paired RGB mosaic images IRGB

2×2 and their corresponding
ground-truth RGB demosaiced images ÎRGB .

Table 3 presents the quantitative results. Compared to
NAFNet, NAFNet integrated with our modules achieves
consistent improvement across all metrics (first vs. third
rows of the table), demonstrating the benefit of incorpo-

(c) GT

41.94dB

(a) NAFNet-L

37.95dB

(b) NAFNet + Ours

43.10dB

38.62dB

Figure 6. Qualitative comparison of RGB demosaicing: NAFNet-
L processes only the RGB mosaic image as input, whereas
NAFNet+Ours incorporates MS features as guidance during de-
mosaicing. The zoomed-in cropped patches in the red and green
boxes demonstrate the advantages of using MS guidance: en-
hanced detail (red box) and improved color accuracy (green box).

rating MS guidance in RGB restoration. Compared to
NAFNet-L, which benefits from increased model capacity,
our method shows better performance, illustrating effective-
ness of our method in utilizing MS guidance for enhanc-
ing RGB reconstruction quality. Figure 6 further illustrates
the benefits of the proposed method. The zoomed-in re-
gions show how MS guidance contributes to improved de-
tail recovery and color accuracy. Specifically, compared to
NAFNet-L, our method recovers finer spatial details (red
boxes in first vs. second columns) and addresses color inac-
curacies caused by limited spectral diversity of RGB CFA
sensor (green boxes), validating the effectiveness of MS-
guided RGB demosaicing. Furthermore, the results high-
light the flexibility of our dual-camera RGB-MS dataset and
framework, indicating their potential to support both MS
restoration and RGB reconstruction tasks.

3. More Details and Discussion on Experiments
In this section, we provide additional details comparing our
model with the previous approaches (Sec. 5.2 of the main
paper).

3.1. Architectural Modification
Adapting Alignment For both DCT [8] and HSIFN [7],
we perform alignment to ensure a fair comparison. DCT
requires alignment, so we use our pre-alignment module to
provide an aligned RGB image alongside the MS mosaic.
HSIFN includes its own alignment network, which requires



Model PSNR↑ SSIM↑ SAM↓ Params
(MB)

MACs1

(T)
NAFNet [3] 44.97 0.9844 1.566 111.23 0.77
NAFNet-L 45.06 0.9847 1.546 158.57 1.49
NAFNet + Ours 45.82 0.9874 1.450 130.03 2.51

Table 3. Quantitative comparison for RGB demosaicing

two RGB images; we use this network but supply RGB in-
puts from our pre-alignment module.
Upsampling Module For Scenario 2 of the Sec. 5.2 of
the main paper, which aims for the 4× MS demosaicing
task, the baseline MS demosaicing networks DMS are mod-
ified to reconstruct high-resolution MS images from low-
resolution MS mosaics. For NAFSR [3], we adapt NAF-
SSR [4], originally designed for stereo super-resolution,
by removing its stereo-specific cross-attention modules to
accommodate the single mosaic input in our task. For
MCAN and Restormer, we replace the final convolution
layer, which produces a demosaiced image, with a fea-
ture extraction layer, followed by an upsampling mod-
ule that generates high-resolution MS demosaiced images.
The upsampling module comprises convolutional and pixel-
shuffle [13] layers, with its architecture detailed in Table 4.
Discussion on HSIFN While both our method and
HSIFN [7] use color mapping and optical flow for align-
ment, they differ in fusion strategy and backbone design.
HSIFN applies spatial attention between warped RGB and
RGB-mapped HS features prior to decoding, whereas our
method adopts channel attention within the decoder [3],
which is well suited for restoration. For alignment, we
use deformable convolutions, which outperform the direct
warping approach used in HSIFN (Table 1). Additionally,
our model is more efficient in terms of computational cost
(2.53T vs. 18.79T; Table 2).

4. Additional Qualitative Results
We present qualitative results on the proposed dual-camera
RGB-MS test set for the 1× MS demosaicing task (Sce-
nario 1 in Sec. 5.2 of the main paper) in Figs. 7 to 16, and
for the 4× MS demosaicing task (Scenario 2 in Sec. 5.2 of
the main paper) in Figs. 17 to 26. The visualized results
include MS demosaics converted to the sRGB color space,
MS demosaic averaged across the channel dimension, per-
channel MS demosaics, and error maps computed between
the restored and ground-truth MS demosaiced images.
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Figure 7. Qualitative comparison of 1× MS demosaicing results for a dual-camera scenario featuring MS and RGB sensors with the
same spatial resolution but employing asymmetric CFAs. The top row shows the predicted MS demosaics converted to the sRGB color
space using the color conversion matrix C (Eq. (5)) and camera metadata, with CIE D65 as the reference white point. The second row
presents the MS demosaic output averaged across the channel dimension, while the third to fifth rows display per-channel MS demosaic
outputs for the 1st, 3rd, and 7th channel indices, respectively. The final row visualizes the error maps between the restored and ground-truth
MS demosaiced images.
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Figure 8. Qualitative comparison of 1× MS demosaicing results for a dual-camera scenario featuring MS and RGB sensors with the
same spatial resolution but employing asymmetric CFAs. The top row shows the predicted MS demosaics converted to the sRGB color
space using the color conversion matrix C (Eq. (5)) and camera metadata, with CIE D65 as the reference white point. The second row
presents the MS demosaic output averaged across the channel dimension, while the third to fifth rows display per-channel MS demosaic
outputs for the 4th, 8th, and 14th channel indices, respectively. The final row visualizes the error maps between the restored and ground-
truth MS demosaiced images.
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Figure 9. Qualitative comparison of 1× MS demosaicing results for a dual-camera scenario featuring MS and RGB sensors with the
same spatial resolution but employing asymmetric CFAs. The top row shows the predicted MS demosaics converted to the sRGB color
space using the color conversion matrix C (Eq. (5)) and camera metadata, with CIE D65 as the reference white point. The second row
presents the MS demosaic output averaged across the channel dimension, while the third to fifth rows display per-channel MS demosaic
outputs for the 2nd, 3rd, and 13th channel indices, respectively. The final row visualizes the error maps between the restored and ground-
truth MS demosaiced images.
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Figure 10. Qualitative comparison of 1× MS demosaicing results for a dual-camera scenario featuring MS and RGB sensors with the
same spatial resolution but employing asymmetric CFAs. The top row shows the predicted MS demosaics converted to the sRGB color
space using the color conversion matrix C (Eq. (5)) and camera metadata, with CIE D65 as the reference white point. The second row
presents the MS demosaic output averaged across the channel dimension, while the third to fifth rows display per-channel MS demosaic
outputs for the 6th, 7th, and 16th channel indices, respectively. The final row visualizes the error maps between the restored and ground-
truth MS demosaiced images.
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Figure 11. Qualitative comparison of 1× MS demosaicing results for a dual-camera scenario featuring MS and RGB sensors with the
same spatial resolution but employing asymmetric CFAs. The top row shows the predicted MS demosaics converted to the sRGB color
space using the color conversion matrix C (Eq. (5)) and camera metadata, with CIE D65 as the reference white point. The second row
presents the MS demosaic output averaged across the channel dimension, while the third to fifth rows display per-channel MS demosaic
outputs for the 2nd, 12th, and 15th channel indices, respectively. The final row visualizes the error maps between the restored and ground-
truth MS demosaiced images.
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Figure 12. Qualitative comparison of 1× MS demosaicing results for a dual-camera scenario featuring MS and RGB sensors with the
same spatial resolution but employing asymmetric CFAs. The top row shows the predicted MS demosaics converted to the sRGB color
space using the color conversion matrix C (Eq. (5)) and camera metadata, with CIE D65 as the reference white point. The second row
presents the MS demosaic output averaged across the channel dimension, while the third to fifth rows display per-channel MS demosaic
outputs for the 5th, 10th, and 13th channel indices, respectively. The final row visualizes the error maps between the restored and ground-
truth MS demosaiced images.
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Figure 13. Qualitative comparison of 1× MS demosaicing results for a dual-camera scenario featuring MS and RGB sensors with the
same spatial resolution but employing asymmetric CFAs. The top row shows the predicted MS demosaics converted to the sRGB color
space using the color conversion matrix C (Eq. (5)) and camera metadata, with CIE D65 as the reference white point. The second row
presents the MS demosaic output averaged across the channel dimension, while the third to fifth rows display per-channel MS demosaic
outputs for the 2nd, 8th, and 16th channel indices, respectively. The final row visualizes the error maps between the restored and ground-
truth MS demosaiced images.
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Figure 14. Qualitative comparison of 1× MS demosaicing results for a dual-camera scenario featuring MS and RGB sensors with the
same spatial resolution but employing asymmetric CFAs. The top row shows the predicted MS demosaics converted to the sRGB color
space using the color conversion matrix C (Eq. (5)) and camera metadata, with CIE D65 as the reference white point. The second row
presents the MS demosaic output averaged across the channel dimension, while the third to fifth rows display per-channel MS demosaic
outputs for the 7th, 9th, and 11th channel indices, respectively. The final row visualizes the error maps between the restored and ground-
truth MS demosaiced images.
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Figure 15. Qualitative comparison of 1× MS demosaicing results for a dual-camera scenario featuring MS and RGB sensors with the
same spatial resolution but employing asymmetric CFAs. The top row shows the predicted MS demosaics converted to the sRGB color
space using the color conversion matrix C (Eq. (5)) and camera metadata, with CIE D65 as the reference white point. The second row
presents the MS demosaic output averaged across the channel dimension, while the third to fifth rows display per-channel MS demosaic
outputs for the 6th, 12th, and 14th channel indices, respectively. The final row visualizes the error maps between the restored and ground-
truth MS demosaiced images.
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Figure 16. Qualitative comparison of 1× MS demosaicing results for a dual-camera scenario featuring MS and RGB sensors with the
same spatial resolution but employing asymmetric CFAs. The top row shows the predicted MS demosaics converted to the sRGB color
space using the color conversion matrix C (Eq. (5)) and camera metadata, with CIE D65 as the reference white point. The second row
presents the MS demosaic output averaged across the channel dimension, while the third to fifth rows display per-channel MS demosaic
outputs for the 4th, 9th, and 13th channel indices, respectively. The final row visualizes the error maps between the restored and ground-
truth MS demosaiced images.
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Figure 17. Qualitative comparison of 4× MS demosaicing results for a dual-camera scenario featuring MS and RGB sensors with the
same spatial resolution but employing asymmetric CFAs. The top row shows the predicted MS demosaics converted to the sRGB color
space using the color conversion matrix C (Eq. (5)) and camera metadata, with CIE D65 as the reference white point. The second row
presents the MS demosaic output averaged across the channel dimension, while the third to fifth rows display per-channel MS demosaic
outputs for the 4th, 10th, and 14th channel indices, respectively. The final row visualizes the error maps between the restored and ground-
truth MS demosaiced images.
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Figure 18. Qualitative comparison of 4× MS demosaicing results for a dual-camera scenario featuring MS and RGB sensors with the
same spatial resolution but employing asymmetric CFAs. The top row shows the predicted MS demosaics converted to the sRGB color
space using the color conversion matrix C (Eq. (5)) and camera metadata, with CIE D65 as the reference white point. The second row
presents the MS demosaic output averaged across the channel dimension, while the third to fifth rows display per-channel MS demosaic
outputs for the 1st, 7th, and 8th channel indices, respectively. The final row visualizes the error maps between the restored and ground-truth
MS demosaiced images.



er
ro

r m
ap

 b
et

w
ee

n
M

S 
ou

tp
ut

 a
nd

 G
T

m
ea

n 
ac

ro
ss

 c
ha

nn
el

(e) GT

ch
an

ne
l #

13
sR

G
B

 v
is

ua
liz

at
io

n

(a) Restormer-L

35.92dB

(b) Restormer + Ours

47.15dB

(c) NAFSR-L

36.37dB

(d) NAFSR + Ours

47.70dB 0.
05

0

ch
an

ne
l #

6
ch

an
ne

l #
2

M
S 

D
em

os
ai

c 
Im

ag
es

1.
00

0

Figure 19. Qualitative comparison of 4× MS demosaicing results for a dual-camera scenario featuring MS and RGB sensors with the
same spatial resolution but employing asymmetric CFAs. The top row shows the predicted MS demosaics converted to the sRGB color
space using the color conversion matrix C (Eq. (5)) and camera metadata, with CIE D65 as the reference white point. The second row
presents the MS demosaic output averaged across the channel dimension, while the third to fifth rows display per-channel MS demosaic
outputs for the 2nd, 6th, and 13th channel indices, respectively. The final row visualizes the error maps between the restored and ground-
truth MS demosaiced images.
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Figure 20. Qualitative comparison of 4× MS demosaicing results for a dual-camera scenario featuring MS and RGB sensors with the
same spatial resolution but employing asymmetric CFAs. The top row shows the predicted MS demosaics converted to the sRGB color
space using the color conversion matrix C (Eq. (5)) and camera metadata, with CIE D65 as the reference white point. The second row
presents the MS demosaic output averaged across the channel dimension, while the third to fifth rows display per-channel MS demosaic
outputs for the 3rd, 11th, and 14th channel indices, respectively. The final row visualizes the error maps between the restored and ground-
truth MS demosaiced images.
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Figure 21. Qualitative comparison of 4× MS demosaicing results for a dual-camera scenario featuring MS and RGB sensors with the
same spatial resolution but employing asymmetric CFAs. The top row shows the predicted MS demosaics converted to the sRGB color
space using the color conversion matrix C (Eq. (5)) and camera metadata, with CIE D65 as the reference white point. The second row
presents the MS demosaic output averaged across the channel dimension, while the third to fifth rows display per-channel MS demosaic
outputs for the 2nd, 7th, and 13th channel indices, respectively. The final row visualizes the error maps between the restored and ground-
truth MS demosaiced images.
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Figure 22. Qualitative comparison of 4× MS demosaicing results for a dual-camera scenario featuring MS and RGB sensors with the
same spatial resolution but employing asymmetric CFAs. The top row shows the predicted MS demosaics converted to the sRGB color
space using the color conversion matrix C (Eq. (5)) and camera metadata, with CIE D65 as the reference white point. The second row
presents the MS demosaic output averaged across the channel dimension, while the third to fifth rows display per-channel MS demosaic
outputs for the 5th, 8th, and 16th channel indices, respectively. The final row visualizes the error maps between the restored and ground-
truth MS demosaiced images.
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Figure 23. Qualitative comparison of 4× MS demosaicing results for a dual-camera scenario featuring MS and RGB sensors with the
same spatial resolution but employing asymmetric CFAs. The top row shows the predicted MS demosaics converted to the sRGB color
space using the color conversion matrix C (Eq. (5)) and camera metadata, with CIE D65 as the reference white point. The second row
presents the MS demosaic output averaged across the channel dimension, while the third to fifth rows display per-channel MS demosaic
outputs for the 3rd, 6th, and 12th channel indices, respectively. The final row visualizes the error maps between the restored and ground-
truth MS demosaiced images.
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Figure 24. Qualitative comparison of 4× MS demosaicing results for a dual-camera scenario featuring MS and RGB sensors with the
same spatial resolution but employing asymmetric CFAs. The top row shows the predicted MS demosaics converted to the sRGB color
space using the color conversion matrix C (Eq. (5)) and camera metadata, with CIE D65 as the reference white point. The second row
presents the MS demosaic output averaged across the channel dimension, while the third to fifth rows display per-channel MS demosaic
outputs for the 9th, 10th, and 16th channel indices, respectively. The final row visualizes the error maps between the restored and ground-
truth MS demosaiced images.
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Figure 25. Qualitative comparison of 4× MS demosaicing results for a dual-camera scenario featuring MS and RGB sensors with the
same spatial resolution but employing asymmetric CFAs. The top row shows the predicted MS demosaics converted to the sRGB color
space using the color conversion matrix C (Eq. (5)) and camera metadata, with CIE D65 as the reference white point. The second row
presents the MS demosaic output averaged across the channel dimension, while the third to fifth rows display per-channel MS demosaic
outputs for the 7th, 13th, and 15th channel indices, respectively. The final row visualizes the error maps between the restored and ground-
truth MS demosaiced images.
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Figure 26. Qualitative comparison of 4× MS demosaicing results for a dual-camera scenario featuring MS and RGB sensors with the
same spatial resolution but employing asymmetric CFAs. The top row shows the predicted MS demosaics converted to the sRGB color
space using the color conversion matrix C (Eq. (5)) and camera metadata, with CIE D65 as the reference white point. The second row
presents the MS demosaic output averaged across the channel dimension, while the third to fifth rows display per-channel MS demosaic
outputs for the 1st, 5th, and 12th channel indices, respectively. The final row visualizes the error maps between the restored and ground-
truth MS demosaiced images.
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