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Supplementary Material

In this supplementary material, we mainly present the
mathematical proof of Equation (8) in our main paper.

Starting from Equation (6):

DSoften-RKL(pfake,t∥preal,t) = DKL

(
1

2
preal,t +

1

2
pfake,t

∥∥∥∥preal,t

)
.

For notation simplicity purpose, we define pt(x) := preal,t
and qt(x) := pfake,t; here x = F (Gθ(z), t) defined in the
main paper. Then, we have:
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Taking derivative w.r.t to model parameter θ, we have the
soften reverse KL divergence loss:
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As pt(x) is the real distribution, which is constant w.r.t θ.
According to the chain rule, we have:
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Define rt(x) = pt(x)/qt(x). Combining the derived B
and previous A, we have:
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According to log-derivative trick, we have:
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This concludes the proof of Equation (8) in the main paper.


