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A. Further Background
A.1. Diffusion Models
Recall that unconditional diffusion models learn the score
function rxt log p(x) through denoising score matching.
Assuming we have learned a neural network that approx-
imates this score well, the backbone of most state of the art
diffusion-based inverse problem solvers is the estimation of
µ0|t = E[x0 | xt] using the learned diffusion model. This
is known as Tweedie’s formula, which we state below.

Lemma 4. (Tweedie’s formula [17]) Suppose p(xt | x0) =
N (
p
↵tx0, (1� ↵t)I). Then the posterior mean is

E[x0 | xt] =
1
p
↵t

(xt + (1� ↵t)rxt log p(xt)) (16)

Proof. We expand the score function as

rxt log p(xt) =
rxtp(xt)

p(xt)
(17)

=
1

p(xt)

Z
rxtp(xt | x0)p(x0) dx0. (18)

We can rewrite rxtp(xt | x0) as p(xt | x0)rxt log p(xt |

x0) and group p(xt|x0)p(x0)
p(xt)

= p(x0 | xt) to give

=

Z
p(x0 | xt)rxt log p(xt | x0) dx0 (19)

=

Z
p(x0 | xt)

p
↵tx0 � xt

1� ↵t
dx0 (20)

=

p
↵tE[x0 | xt]� xt

1� ↵t
. (21)

Rearranging, we have our final result that gives the posterior
mean as a function of the unconditional score function.

A.2. Signal Processing
The Fourier transform is a fundamental tool in signal pro-
cessing that decomposes a signal into its constituent fre-
quencies. For a continuous signal x(t), the Fourier trans-
form is given by

Fcont(x)[f ] =

Z 1

�1
x(t)e�2⇡iftdt, (22)

where i denotes the complex root of unity. In discrete do-
mains, such as digital images, we work with the Discrete
Fourier Transform (DFT). For a signal x 2 Rn, we denote

its DFT as F(x), where F(x)[fk] represents the frequency
component at the k-th frequency

F(x)[fk] =
N�1X

n=0

x[n]e�2⇡ikn/N . (23)

The DFT can be expressed as a matrix operation F 2 Cn⇥n

where
Fjk =

1
p
n
e�2⇡ijk/n. (24)

This matrix F is unitary. A discrete convolution operation
x ~ h can be represented as a matrix multiplication Chx,
where Ch is a circulant matrix constructed from the filter
h. A circulant matrix has the special property that each row
is a cyclic shift of the previous row:

Ch =

2

6664

h0 hn�1 · · · h1

h1 h0 · · · h2
...

...
. . .

...
hn�1 hn�2 · · · h0

3

7775
. (25)

A fundamental property of circulant matrices is that they
can be diagonalized by the DFT matrix

Ch = F⇤diag(F(h))F. (26)

This relationship explains why convolution in the spatial
domain equals pointwise multiplication in the frequency do-
main

F(x~ h) = F(x)� F(h). (27)
Natural images typically exhibit a power law relationship in
their frequency spectrum such that

|F(x)[fk]|
2
/

1

|fk|↵
, (28)

where ↵ is typically around 2. This relationship, often
called the 1/f2 law, arises from the fundamental structure
of natural scenes:

• Natural images tend to be locally smooth with occasional
sharp transitions (edges)

• Objects in natural scenes exhibit self-similarity across
scales

• Natural scenes contain hierarchical structures from fine to
coarse details

This power law relationship provides a strong prior for im-
age processing tasks, as it captures the statistical regularities
present in natural images. The decay of frequency compo-
nents according to this law explains why natural images are
compressible and why high-frequency noise is particularly
noticeable in image data.



B. Proofs for Section 5
We first prove Lemma 1, restated below.

Lemma 5. Let fk = k
n for k = 0, . . . , n � 1 denote the

DFT sample frequencies for a signal of length n. There ex-
ists a covariance matrix ⌃ such that for x ⇠ N (0,⌃), the
following two properties hold. First, the signal x follows a
power law in the frequency domain with parameters c,� >
0 i.e. it has a power spectral density S(fk) = c|fk|��

for the non-zero DFT sample frequencies fk. Second, the
eigenvalues of ⌃ are precisely c|fk|�� .

Proof. We will first provide a construction for ⌃. Let R be
a n-length signal that is the inverse Discrete Fourier Trans-
form of S(fk) = c|fk|�� for the non-zero DFT sample fre-
quencies fk. We construct ⌃ as a circulant matrix whose
first row (and column) is R.

Next, we show the two properties of ⌃ needed to prove
the lemma. First, let x ⇠ N(0,⌃). Then, x can be viewed
as a finite stochastic process that is zero-mean, wide-sense,
and stationary. It is zero-mean trivially because x is sam-
pled from a zero-mean distribution. It is wide-sense sta-
tionary because ⌃ is circulant. Thus, the autocovariance
function, which is exactly R, depends only on the gap be-
tween two elements in the signal. From the discrete-time
Wiener-Khinchin theorem, we have that

E

|F(x)[fk]|2

n

�
= F(R)[fk] (29)

By construction, we have that F(R)[fk] = S(fk). This
shows that in expectation, x follows a power spectral den-
sity of S(fk). Lastly, because ⌃ is circulant, we have that
the eigenvalues of ⌃ are the Discrete Fourier Transform of
the first row, which is R. As before, by construction, we
have that F(R)[fk] = S(fk). From Equation (29), we have
that the eigenvalues of ⌃ are precisely c|fk|�� .

Before we prove our main result, Theorem 2, we prove
a useful lemma that calculates the posterior denoising dis-
tribution under a multivariate Gaussian assumption on the
data.

Lemma 6. (Posterior Denoising Distribution) Suppose
x0 ⇠ N (0,⌃). Suppose xt | x0 ⇠ N (

p
↵tx0, (1� ↵t)I).

Then,
p(x0 | xt) = N (µ0|t,⌃0|t) (30)

where µ0|t = �txt, �t =
p
↵t⌃(↵t⌃+(1�↵t)I)�1, and

⌃0|t = ⌃�
p
↵t�t⌃.

Proof. Suppose x0 ⇠ N (0,⌃) and xt | x0 ⇠

N (
p
↵tx0, (1� ↵t)I). This implies that

xt =
p
↵tx0 + (1� ↵t)✏ (31)

where ✏ ⇠ N (0, I). Therefore, we can write the joint dis-
tribution of x0 and xt as a multivariate Gaussian [2]:


x0

xt

�
⇠ N

✓
0,


⌃

p
↵t⌃

p
↵t⌃ ↵t⌃ + (1� ↵t)I

�◆
. (32)

Using properties of conditional Gaussian distributions, we
have that p(x0 | xt) is also a Gaussian distribution with
conditional mean and covariance

E[x0 | xt] =
p
↵t⌃ (↵t⌃ + (1� ↵t)I)

�1 xt (33)

and

Cov[x0 | xt] = ⌃�
p
↵t⌃ (↵t⌃ + (1� ↵t)I)

�1p↵t⌃.
(34)

Letting �t =
p
↵t⌃(↵t⌃+(1�↵t)I)�1, µ0|t = E[x0 | xt]

and ⌃0|t = Cov[x0 | xt], we have shown the lemma.

Next, we prove our main theoretical result, Theorem 2,
restated below.

Theorem 7. Suppose x0 is drawn from N (0,⌃) and we are
given linear measurements y = A(x0)+z, where A(x0) =
Ax0 and z ⇠ N (0,�2

yI). Suppose that the intermedi-
ate value xt of the continuous-time reverse diffusion from
Equation (5) can be written as xt =

p
↵̄tx0 +

p
1� ↵̄t✏

where ✏ ⇠ N (0, I). Then, we have that the true noisy like-
lihood score rxt log p(y | xt) is

(A�t)
T(A⌃0|tA

T + �2
yI)�1(y �Aµ0|t), (35)

where �t =
p
↵̄t⌃(↵̄t⌃ + (1 � ↵̄t)I)�1, µ0|t = E[x0 |

xt] = �txt and ⌃0|t = Cov[x0 | xt] = ⌃ �
p
↵̄t�t⌃.

Moreover, the FGPS approximation rxt log p(Cty | µ0|t)
can be analytically calculated as

(CtA�t)
T (�2

yCtC
T
t )�1(Cty �CtAµ0|t). (36)

Proof. We denote  �xt as the iterate from the continuous-
time reverse diffusion process such that  �xt =

p
↵̄tx0 +

p
1� ↵̄t✏ where ✏ ⇠ N (0, I). From Lemma 6, we have

that p(x0 |
 �xt) = N (µ0|t,⌃0|t) where µ0|t = �t

 �xt and
⌃0|t = ⌃�

p
↵t�t⌃. Now, similar to the proof of Lemma

6, since p(y | x0) = N (Ax0,�2
yI), we can also calculate

p(y |
 �xt) in closed form as another Gaussian distribution.

Specifically, first we can write the joint distribution of x0

and y conditioned on �xt as a multivariate Gaussian [2]:

x0

y

� ��� �xt ⇠ N

✓
µ0|t
Aµ0|t

�
,


⌃0|t ⌃0|tA

T

A⌃0|t A⌃0|tA
T + �2

yI

�◆
.

(37)
Further, using properties of conditional Gaussian distribu-
tions, we have that p(y |

 �xt) = N (Aµ0|t,A⌃0|tA
T +



�2
yI). Let �t = y �Aµ0|t. Then, computing the gradient

of p(y |
 �xt) with respect to �xt, we have

r �xt
log p(y |

 �xt) = r �xt
logN (Aµ0|t,A⌃0|tA

T + �2
yI)

(38)

= r �xt
� 0.5�T

t (A⌃0|tA
T + �2

yI)
�1�t

(39)

=

✓
A
@µ0|t

@ �xt

◆T

(A⌃0|tA
T + �2

yI)
�1�t

(40)

As µ0|t = �t
 �xt, we have that @µ0|t

@ �xt
= �t, which gives us

Equation (35). The FGPS approximation to the true con-
ditional score is r �xt

log p(y |
 �xt) ⇡ r �xt

log p(Cty |

µ0|t) = r �xt
N (Aµ0|t,�

2
yI). Similar to above, we can also

calculate its gradient r �xt
log p(Cty | µ0|t) with respect to

 �xt as

(CtA�t)
T (�2

yCtC
T
t )�1(Cty �CtAµ0|t). (41)

Corollary 3 can easily be proven by taking Ct as the
identity matrix in the above proof.

C. Theoretical Investigation of Approximation
Gap of FGPS and DPS

Our main theorem shows in the multivariate Gaussian set-
ting, the true conditional score differs from approximations
in the term (I + A⌃0|tA

>)�1, which requires approxima-
tions in general. DPS approximates it at as the identity ma-
trix. In this section, we show that in certain cases, FGPS is a
significantly better approximation than the identity matrix.
To see this, consider when A is a high-pass filter and the
data covariance is ⌃f such that it follows a power law in
the frequency domain. Then, the matrix A⌃0|tA

> has sig-
nificant energy in high-frequency directions. Specifically, in
the Fourier basis, denoting the eigenvalues of A, ⌃f , ⌃0|t
as ai, �i and �t

i respectively, the eigenvalues of A⌃0|tA
>

take the form a2
i�

t
i, where a2

i grows with frequency (due
to the high-pass nature of A), and �t

i = (1�↵t)�i

↵t�i+(1�↵t)
. Al-

though �t
i is small in high-frequency directions, the product

a2
i�

post
i can still be O(1) or larger due to the amplification

by A. Consequently, the eigenvalues of (I+A⌃0|tA
>)�1

in those directions, given by 1
1+a2

i�
post
i

, are significantly
less than 1, indicating strong suppression of high-frequency
components especially when ↵t is very small as in the be-
ginning of the reverse process. In contrast, low-frequency
directions (where a2

i ⇡ 0) are preserved. This shows that
(I + A⌃0|tA

>)�1 acts as a low-pass filter. The FGPS ap-
proximation, C>t (CtC>t )�1Ct, which is a projection ma-
trix onto the low-frequency components, thus approximates

this behavior more faithfully than the identity matrix, which
uniformly preserves all directions.

D. Further Motivations for our Method
In Section 5, we argued that when the forward operator is
convolution with a high-pass filter, existing methods have
a large approximation between the conditional score and
its approximation, which can lead to compromised sam-
ple quality in practice. High-pass filtering may seem like
a contrived example, because after all, many inverse prob-
lem tasks considered in the literature have forward operators
that are low-pass filters, such as Gaussian deblurring and su-
perresolution tasks. Even though some natural imaging sys-
tems such as phase contrast microscopy, we argue that the
high-pass filter effect can also show up in more complex im-
age restoration tasks. For example, for motion deblurring,
the forward operator can act as a high-pass filter in certain
spatial directions of the image. In Figure 6, we examine this
effect by looking at the log magnitude of the frequency do-
main of an image convolved with a simple directional blur
kernel. We can clearly see that in the red circled direction
of the Fourier domain, the filter retains high frequency com-
ponents of the original image. This is also mathematically
evident using the Fourier convolution theorem. The Fourier
convolution theorem states that

F(k ~ x) = F(k) · F(x), (42)

where ~ denotes convolution and · denotes an element-
wise product. Further, for a directional blur kernel, the
Fourier transform in spatial directions has high frequency
values in directions orthogonal to the direction of the blur.
Thus, it is clear that in those directions, the motion blur will
retain high frequency components. While the high-pass fil-
ter considered in Figure 1 was an extreme case of this, our
analysis highlights a crucial deficiency of existing methods
since high frequency components of the measurement can
amplify approximation errors.

Lastly, we emphasize that our experimental results
demonstrate a fascinating phenomenon where the perfor-
mance gap between FGPS and baseline methods is even
larger on more complex datasets, hinting at the fact that be-
sides the frequency characteristics of the forward operator,
the frequency characteristics and quality of the Tweedie es-
timate also greatly affects reconstruction. It would be an
interesting theoretical direction to understand why the fre-
quency schedule has larger benefits in this case.

E. Experimental Details
Below, we list the detailed setup for all experiments re-
ported in the main paper. All the images for both FFHQ



Figure 6. Directional motion blur can retain high frequency components in certain spatial directions orthogonal to the direction of the blur.
The red circled direction shows an example of such a direction.

and ImageNet dataset are resized to 256 ⇥ 256, and we re-
port results for 1000 images from the validation datasets for
the FFHQ and Imagenet datasets. We will release our code
upon publication.

E.1. Inverse Problem Task Descriptions
E.1.1. Linear Inverse Problems
For the first three image restoration problems we consider,
the forward operators are linear operators defined as con-
volution with a given kernel. These kernels are all of size
61⇥ 61.

Gaussian Deblurring. The forward operator is convolution
with a Gaussian blur kernel with standard deviation 3.

Motion Deblurring. The forward operator is convolution
with a motion blur kernel generated from code2 with inten-
sity 0.5.

Deconvolution with High Pass Filter. the forward operator
is a high-pass filter implemented as a Dirac kernel minus a
Gaussian blur kernel of standard deviation 5.0.

E.1.2. Nonlinear Inverse Problems
Image Dehazing. The fourth image restoration is a non-
linear inverse problem, image dehazing, where the forward
operator is a hazing operator with strength 1. The hazing
operator models how light is scattered and attenuated in the
atmosphere, based on the atmospheric scattering model

A(x) = x · t(x) + L(1� t(x)), (43)

where x is the original clear image (scene radiance), t(x) is
the transmission map representing the portion of light that
reaches the camera, and L is the atmospheric light value.

2
https://github.com/LeviBorodenko/motionblur

The transmission map t(x) can be modeled using the Beer-
Lambert law, which states that

t(x) = e��d(x). (44)

Above, � is the atmospheric scattering coefficient, and d(x)
is the scene depth map. In our experiments, we set L =
1,� = 1, and set d(x) be Euclidean distance of each pixel
to the center of the image.

E.2. Baselines
DPS [9] We use the code from https://github.com/

DPS2022/diffusion-posterior-sampling us-
ing the default hyperparameter settings for Gaussian deblur-
ring and motion deblurring for both FFHQ and ImageNet.
For high-pass filter operator, we used the same hyperparam-
eters used for motion deblurring.

MCG [10] We use the code from https://github.

com/HJ-harry/MCG_diffusion using the default
hyperparameter settings for Gaussian deblurring and mo-
tion deblurring for both FFHQ and ImageNet. For high-pass
filter operator, we used the same hyperparameters used for
motion deblurring.

DSG [42] We use the code from https://github.

com/LingxiaoYang2023/DSG2024 using the default
hyperparameter settings for Gaussian deblurring for both
FFHQ and ImageNet. The only hyperparameter change was
that we set interval = 10 as we observed this worked bet-
ter in practice. For high-pass filter deconvolution and mo-
tion deblurring operator, we used the same hyperparameters
used for Gaussian deblurring.

Score-SDE/ILVR [8, 37] Generally, we group Score-SDE
and ILVR as methods that use a sequence of noisy mea-
surements to approximate the conditional score, as men-
tioned in [12] and [9]. This is a generalization of the

https://github.com/LeviBorodenko/motionblur
https://github.com/DPS2022/diffusion-posterior-sampling
https://github.com/DPS2022/diffusion-posterior-sampling
https://github.com/HJ-harry/MCG_diffusion
https://github.com/HJ-harry/MCG_diffusion
https://github.com/LingxiaoYang2023/DSG2024
https://github.com/LingxiaoYang2023/DSG2024


methods in [37] and [8] as their methods only were pre-
sented for the inpainting and superresolution tasks. To con-
sider general tasks, we sample a sequence of measurements
yt ⇠ N (

p
↵̄ty, (1� ↵̄tI)). Then, we approximate the con-

ditional score as �⌘rxt kyt �A(xt)k
2
2. We use the step

size ⌘ from the DPS method [9].

AOD-Net. We use the code from https://github.

com/MayankSingal/PyTorch-Image-Dehazing

and train the network using the default parameters on 10000
images from the FFHQ training dataset.

DoubleDIP. We use the code from https://github.

com/yossigandelsman/DoubleDIP using all de-
fault parameters. This method is unsupervised and does not
require any retraining.

E.3. Details for Figure 1
In Figure 1, we demonstrated the approximation gap of DPS
and our method on synthetic data. Below, we describe the
precise experimental details of our experiments.

Forward Operators. We consider a high-pass filter oper-
ators in our experiments. a low-pass filter and a high-pass
filter. First, we create a Gaussian blur kernel of width � i.e.
this kernel is e�x

2/(2�2) and normalized to have sum 1. For
the high-pass filter, we simply subtract the Gaussian blur
kernel of width � from a Dirac kernel, which has 1 at the
center and zeroes elsewhere. The filter is a circulant ma-
trix constructed from this kernel. Importantly, the first row
of the circulant matrix corresponding to this kernel is nor-
malized to have sum zero, such that the kernel is indeed a
high-pass filter.

Data Generation. Next, we describe the data generation
process. Recall from Lemma 1 the construction of a co-
variance matrix ⌃f such that data drawn from N (0,⌃f )
follows a power law in the frequency domain with parame-
ters c and �. We let c = 1 and � = 2.5, which is the typical
range for natural image data [34]. We draw 10000 signals
x(i) of length 2000 from N (0,⌃f ). For each signal, we
generate a corresponding measurement y(i) = Ax(i) + z,
where z ⇠ N (0, I), and A is the circulant matrix corre-
sponding to the low-pass filter or the high-pass filter.

Approximation Gap. For each x(i),y(i) pair, we calculate
x(i)
t ⇠ N (

p
↵̄tx(i), (1 � ↵̄t)I), where ↵̄t is the variance

schedule from the DDPM paper [20]. We report the av-
erage approximation gap over the 10000 signals. Below,
we give the exact approximation that our method, FGPS,
makes for the noisy likelihood score. From Theorem 2, we
know that under a multivariate normal assumption on the
data, the posterior mean µ0|t is �txt. Under the same as-
sumptions as Theorem 2, for linear inverse problems where
A(x0) = Ax0 we analytically compute our approximation

to the noisy likelihood score given in Equation (12) as

(CtA)T (�2
yCtC

T
t )�1(Cty �CtAµ0|t). (45)

Frequency Curriculum. For our method, we have the
choices of the frequency curriculum described through ⌧T
and ⌧1, the frequency cutoffs for the time-dependent low
pass filter. For simplicity, we use a frequency curriculum
from the variance schedule of the diffusion model. Specifi-
cally, let �t = 1

↵̄t
�1, which corresponds to the correspond-

ing variance-exploding parameterization of the SDE (see
[24], Appendix B). Then we set ⌧t be the max frequency
value fk such that S(fk) � max{�2

y,�
2
t }, where S(fk)

denotes the power spectral density from Equation (8). This
utilizes the intuition that for x(i)

t , the frequency components
of the original signal x(i) still present in the image are the
frequencies below ⌧t.

E.4. Implementation Details for Our Method
In practice, we let ⌧1 and ⌧T be hyperparameters and con-
sider various schedules to interpolate between them. How-
ever, our theoretical results can guide us on setting them
in a data-dependent way. Recall that natural images tend
to follow a radially averaged power law in the frequency
domain such that each non-zero frequency fk has power
S(fk) ⇡ c|fk|�� for some constants c,� > 0. We employ
three heuristics for setting our frequency schedule.

1. (Setting ⌧1 to improve robustness to noise) When the
measurement noise has variance �2

y , higher frequency
components of y are affected, specifically those frequen-
cies f such that S(f)  �2

y . Denoting fnoise as the min-
imum frequency value that satisfies this constraint, we
can set ⌧1 less than fnoise and make our method robust to
additive Gaussian noise of a known variance.

2. (Frequency Schedule as Function of Power Law Decay)
For data that follows a faster decaying power law (when
� is larger), we can set a schedule for ⌧t that also in-
creases faster as a function of t.

3. (Setting ⌧T ) For natural images, it is sufficient to set
⌧T to be a small percentage of the overall frequency
range, as this contains most of the information present
in the measurement y. This is the same intuition be-
hind JPEG compression. In our experiments on natural
images, we take ⌧T to be roughly 30% of the overall fre-
quency range.

To implement a frequency schedule, we use a binary
mask applied in the frequency domain. Specifically, we
utilize the Fast Fourier Transform (FFT) to transform the
image data into the frequency domain. A low-pass filter
mask is then created based on a specified cutoff frequency
⌧t. We utilize the Euclidean distance from the center of the
frequency domain to create the low-pass filter mask, which

https://github.com/MayankSingal/PyTorch-Image-Dehazing
https://github.com/MayankSingal/PyTorch-Image-Dehazing
https://github.com/yossigandelsman/DoubleDIP
https://github.com/yossigandelsman/DoubleDIP


selectively retains frequencies below the cutoff value. As
the reverse process progresses, the cutoff is adjusted to al-
low more high-frequency components, thereby refining the
image details. This method efficiently integrates frequency
control into the reverse diffusion process, contributing to
improved image restoration. In our work, we consider two
frequency schedules, an exponential schedule and a linear
schedule, which interpolate between ⌧T and ⌧1 in different
ways. Precisely, the exponential schedule follows

⌧t = ⌧1 � (⌧1 � ⌧T ) exp

✓
�

5t

T

◆
, (46)

and the linear schedule follows

⌧t = ⌧T +
t

T
(⌧1 � ⌧T ). (47)

Further, we set the step size St to be St =
t

k�t(y)��(A(µ0|t))k2
I for a scalar time-dependent hyperpa-

rameter t. We set this schedule to smoothly transition from
T at the beginning of the reverse process to 1 at the end.
Precisely, this schedule follows

t =
1

2
(T + 1) +

1

2
(T � 1) cos

✓
⇡t

T

◆
, (48)

where t denotes the current time step, and T is the total
number of time steps (e.g. 1000 in our case).

Next, we detail all the hyperparameter settings used for
our experiments on the FFHQ and ImageNet datasets.

• FFHQ
– Gaussian Deblurring:

* Step Size: T = 3.0,1 = 0.6

* Frequency Schedule: Exponential
– Motion Deblurring:

* Step Size: T = 5.0,1 = 1.0

* Frequency Schedule: Exponential
– High pass:

* Step Size: T = 5.1,1 = 1.1

* Frequency Schedule: Linear
– Haze:

* Step Size: T = 5.0,1 = 1.0

* Frequency Schedule: Exponential
• ImageNet

– Gaussian Deblurring:
* Step Size: T = 2.0,1 = 0.01

* Frequency Schedule: Linear
– Motion Deblurring:

* Step Size: T = 3.0,1 = 0.1

* Frequency Schedule: Linear
– High pass:

* Step Size: T = 3.5,1 = 0.6

* Frequency Schedule: Linear

In Appendix G, we provide ablation studies to understand
the effects of these hyperparameters on the generation qual-
ity.

E.5. Computational Overhead of Our Method
In this section, we evaluate the computational efficiency of
our method by measuring the average runtime per image on
the FFHQ dataset. We run each method from Table 1 on
100 images, and report the average time taken per image,
given in Table 3. We see that our method introduces mini-
mal computational overhead compared to the DPS method,
demonstrating that our modifications can be implemented
in an efficient manner and easily integrated into existing
frameworks.

Method Time (seconds)
DSG 45.13744
Score-SDE/ILVR 41.411510
MCG 93.20647
DPS 90.641704
FPGS (Ours) 92.383272

Table 3. Average Wall Clock Runtime Per Image (seconds) on
FFHQ Dataset

F. Comparison to ILVR/Score-SDE
Our method is closely related to the Score-SDE and ILVR
works that consider a sequence of noisy measurements yt
such that yt = N (

p
↵ty0, (1 � ↵)I) [8, 37]. These meth-

ods consider approximations to the noisy likelihood score
that are typically of the form LA(yt � A(xt)), where LA
is a fixed matrix that depends on the measurement opera-
tor A. There are three crucial differences between these
methods and our method. First, our approximation to the
noisy likelihood score considers a time-varying model like-
lihood at each diffusion timestep p(y | µ0|t) as given in
Equation (10) as opposed to simply varying yt. Further,
we leverage the powerful denoising capabilities of the pre-
trained diffusion model by using the Tweedie estimate µ0|t
instead of the noisy xt. Lastly, we propose a frequency cur-
riculum that can differ from the variance schedule of the
diffusion model and be adapted to the frequency character-
istics of the data. These differences lead to a drastically
improved performance of our method compared to Score-
SDE/ILVR as seen in Table 1.

G. Further Experiments and Ablation Studies
G.1. Visualizing the Transformed Measurements
In Figure 7, we show the transformed measurements at three
timesteps in the reverse diffusion process when applying
our frequency curriculum on the FFHQ dataset on all the



forward operators we considered. Our theoretical results
indicate that the initial reverse process steps are very im-
portant in order to obtain coarse alignment with the given
measurement, so it is reasonable to align the measurements
with this coarse-to-fine strategy.

G.2. Effect of Frequency Curriculum
Impact of Time-Dependent Curriculum. As observed in
Figure 5, we observe that the time-dependent frequency cur-
riculum helps the stability of the method. Namely, when the
operator is a high pass filter, the time-dependent frequency
curriculum results in high-quality reconstructions. On the
other hand, for a fixed curriculum, we observe that over dif-
ferent generations, most random samples of the diffusion
model fall off the natural image manifold in the early steps
of the reverse process, which results in unnatural looking
images as in Figure 5.

Next, to assess the impact of different frequency cur-
ricula on image quality, we provide a visual comparison
using images generated with linear and exponential time-
dependent curricula on the FFHQ and ImageNet datasets.

FFHQ Motion Deblurring. The images produced with
the exponential frequency schedule exhibit superior qual-
ity, as shown in Figure 9. The exponential increase in high-
frequency components helps to better capture fine facial fea-
tures and intricate details, resulting in more visually appeal-
ing images.

ImageNet Motion Deblurring. The ImageNet dataset ben-
efits more from the linear frequency schedule, as illustrated
in Figure 10. We hypothesize this is because the diversity
and detail of ImageNet scenes require more careful consid-
eration at many frequency ranges to obtain a high-quality
reconstruction.

Motivation for Frequency Schedule Selection. Our ob-
servations indicate that the choice of frequency schedule
should be informed by the characteristics of the underlying
data. The exponential schedule is well-suited for datasets
with structured and hierarchical features, such as faces,
where it is crucial to refine high-frequency details over an
extended number of reverse process time steps. In con-
trast, datasets like ImageNet, which contain diverse and
complex textures, benefit from a more uniform and grad-
ual frequency progression, ensuring consistent detail incor-
poration throughout the sampling process. We note though
that while our method offers the flexibility to incorporate
different frequency curricula, it is not a necessity to obtain
high-quality reconstructions, and even a simple exponential
curriculum can already obtain results that are significantly
better than baseline methods. We simply highlight that this
can be further improved by carefully considering the fre-
quency distribution of the data.

G.3. Effect of Step Size Schedule
Recall that in Equation (12), we had that our approxima-
tion to the score should be scaled by St, which can be
thought of as a step size to the gradient terrm. In practice,
instead of using this exact quantity, which would require
using a potentially large circulant matrix and its inverse, we
set St = 

k�t(y)��(A(µ0|t))k2
I for a scalar hyperparame-

ter , which works well in practice. This is similar to the
step size chosen in DPS. The intuition behind this step size
choice is to control the approximation error. For example,
when the approximation error is high, the step size should
be smaller as the conditional score is noisy. These sched-
ules play a crucial role in the effectiveness and stability of
the optimization process. In this section, we study the ef-
fect of different step size schedules to motivate our choice.
Specifically, we study three step size schedules (where we
vary ) on the motion deblurring task on the FFHQ dataset.
These three schedules are:

1. Fixed small step size (used by DPS)
2. Fixed large step size
3. Cosine Annealed step size according to Equation (48).

This schedule starts with a relatively high step size,
which facilitates rapid progress in the initial stages, and
gradually decreases to smaller step sizes as the optimiza-
tion nears convergence.

In Table 4 and Figure 8, we demonstrate the quantitative
and qualitative differences between the three schedules. We
clearly see that the cosine annealed step size strongly out-
performs the other two schedules, which is why we adopt it
for our experiments. We hypothesize that the cosine sched-
ule allows the model to quickly capture the coarse struc-
ture of the image early on, while the progressively smaller
steps enable fine-tuning of details, leading to a more re-
fined final reconstruction. This is evident from Figure 8.
For example, in the first row, the cosine schedule success-
fully captures the necklace detail around the subject’s neck,
while the fixed small step size schedule completely misses
this feature, resulting in a blurred and oversmoothed output.
The fixed large step size schedule manages to retain some
necklace details but introduces noticeable artifacts, which
degrade the overall image quality. The large step size likely
destabilizes the optimization and pushes the image off the
natural image manifold, which compromises image quality.

Step Size Schedule FID# LPIPS# PSNR" SSIM"
Cosine Annealing 49.66 0.1254 25.53 0.724
Fixed Lower Bound 70.73 0.1790 24.22 0.677
Fixed Upper Bound 59.94 0.1559 24.22 0.686

Table 4. Performance comparison of different scale schedules on
the FFHQ dataset. Metrics include FID, LPIPS, PSNR, and SSIM.



Figure 7. We demonstrate the visual effects of our frequency curriculum on the transformed measurements. In the early stages of the
reverse process, only very coarse features of the measurement are retained.

Figure 8. Qualitative comparison of different scale schedules on the FFHQ dataset. The first row highlights how the cosine schedule
accurately captures details, such as the necklace, while the fixed small step size ( = 1) fails and the fixed large step size ( = 5)
introduces artifacts.

G.4. Further Qualitative Results
Comparison to Baselines. In Figure 11, we see the zoomed
in version from Figure 3, highlighting the intricate details
of the image captured by our reconstructions. In Figure 12,
we see a comprehensive comparison to all the baselines re-
ported in Table 1 on the motion blurring task on the FFHQ

dataset. We observe that Score-SDE/ILVR often captures
the correct structure of the image but fills in different facial
features. MCG usually overfits to the Gaussian measure-
ment noise as reported in [9]. DPS results in good quality
reconstructions, but the images are usually smoothed out
and lose small facial features. DSG performs very well on
the motion deblurring task, as shown also in Table 1. How-



ever, DSG often gives grainy reconstructions and artifacts
that are clearly visible. In contrast, our method is signif-
icantly more stable and is able to give images that have
higher perceptual quality than all the baselines.

FFHQ Additional Results. Figures 13 and 14 show addi-
tional results of our method on the motion deblurring and
image dehazing task on the FFHQ dataset.

ImageNet Additional Results. Figures 15, 16, and 17
show additional results of our method on the Gaussian de-
blurring, motion deblurring, and high-pass filter deconvolu-
tion tasks on the ImageNet dataset. On the high-pass filter
task, we note that there is sometimes a color shift which
results from the loss of color information in the measure-
ment. We observe that compared to DPS and a fixed-time
frequency curriculum (as in Figure 5), our method is much
more stable and usually gives visually plausible reconstruc-
tions instead of strong color artifacts that dominate the re-
construction.

H. Limitations and Future Work
While FGPS requires little frequency schedule tuning, the
step size still plays a large role in dictating image quality
and needs to be carefully tuned. Further, the frequency cur-
riculum is applicable only for image restoration tasks where
the measurement is still an image. Lastly, similar to DPS,
FGPS requires knowledge of the forward operator during
the reverse process, which restricts it to non-blind inverse
problems.

It is important to note that our theoretical results do not
paint the full picture of the success of FGPS in practice.
Empirically, the Tweedie estimate µ0|t used for the condi-
tional score approximation behaves in complex ways and its
frequency structure is not as simple as the form in our the-
oretical results, �tx0. We conjecture it is still important to
explicitly align the frequency structure of the unconditional
score and noisy likelihood score, which is why FGPS out-
performs DPS for low-frequency measurements on FFHQ
and Imagenet. In addition to the role of the Tweedie esti-
mate, we find an intriguing role of the dataset where FGPS
performs even better on harder datasets like ImageNet due
to more complex frequency structure. Explaining both these
phenomena theoretically is an interesting direction for fu-
ture work. That being said, our empirical findings demon-
strate that the core idea behind FGPS, aligning the spec-
tral structure of the measurement with the score function,
remains effective for complex data. Our curriculum strat-
egy reflects a coarse-to-fine alignment of frequencies, mo-
tivated by both the empirical behavior of diffusion models
and spectral properties of natural images. We believe this
insight opens avenues for more principled guidance mecha-
nisms utilizing the structure of the score function.

Future work would include a rigorous analysis of the step
size and how it affects the approximation error. It would
also be useful to consider several competing works and their
introduced approximation errors using our theoretical anal-
ysis as a backbone. Lastly, we hope to extend FGPS to other
inverse problems, both blind and non-blind, where the mea-
surement is not an image such as medical imaging tasks.



Figure 9. Comparison of images on the FFHQ dataset using exponential and linear frequency schedules. The exponential schedule produces
higher-quality images with refined details and realistic textures compared to the linear schedule.

Figure 10. Comparison of images on the ImageNet dataset using exponential and linear frequency schedules. The linear schedule preserves
object shapes and structural details better, resulting in clearer images.



Figure 11. Qualitative results of our method with zoomed in portions of images from Figure 3. Our method successfully preserves finer
details like background pattern.



Figure 12. Qualitative motion deblurring results on FFHQ dataset for all baselines we report in Table 1. The same blur kernel is applied to
each image.



Figure 13. Qualitative motion deblurring results on FFHQ dataset. The same blur kernel is applied to each image.



Figure 14. Qualitative image dehazing results on FFHQ dataset.



Figure 15. Qualitative Gaussian deblurring results on Imagenet dataset.



Figure 16. Qualitative motion deblurring results on Imagenet dataset. The same blur kernel is applied to each image.



Figure 17. Qualitative results on Imagenet dataset when the measurement is a high-pass filter applied to the ground truth image.
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