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A. Datasets Details

So2Sat is designed to detect environmental and urban
dynamics and land cover changes in cities worldwide using
remote sensing data. It combines Sentinel-1 (SAR) and
Sentinel-2 (multispectral) imagery to track urban expansion
and environmental changes. The dataset contains 17 bands,
with imagery captured or upsampled at a 10-meter spatial
resolution. The data is divided into 19,992 training images,
1,000 validation images, and 1,000 test images, each patch
being 32x32 pixels. We selected, for our purpose, the
Sentinel-2 bands.

Brick Kiln focuses on detecting and monitoring brick
kilns, which are often associated with environmental
pollution in rural areas. This dataset uses 13 bands from
Sentinel-2 imagery. The images are 64x64 pixels in size,
with a 10-meter resolution, and consist of around 15,000
samples for training and around 2,000 for validation and test.

ForestNet focuses on forest monitoring, aimed at identifying
and classifying forested areas to support environmental
conservation and management. It utilizes Landsat-8 imagery
with 12 bands, including both multispectral and thermal
bands, at a 15-meter resolution. The dataset has more than
8,000 patches, each 332x332 pixels.

MADOS is focused on detecting marine pollution, such as
oil spills and debris, in oceanic environments. It contains
Sentinel-2 imagery with bands 1-8A, 11, and 12 (8 bands
total), covering various sea surface features from 174 scenes.
The dataset is segmented into 2803 tiles, each measuring
240x240 pixels.

HLS BurnScars provides imagery for identifying burn
scars, a critical task for monitoring the effects of wildfires
on ecosystems and land. It uses Harmonized Landsat and
Sentinel-2 (HLS) data with 6 bands: Blue (B02), Green
(B03), Red (B04), NIR (B8A), SW1 (B11), and SW2 (B12).
The imagery is available at a 30-meter spatial resolution,
and the dataset consists of 804 scenes, each with a size of

512x512 pixels.

Each of these datasets plays a significant role in environmen-
tal monitoring using satellite imagery. They are designed to
tackle a wide range of issues, including urban expansion, pol-
lution, deforestation, forest management, and the impact of
natural disasters like wildfires and oil spills. These datasets
are essential for advancing our ability to monitor and manage
the Earth’s changing environments.

B. On DEFLECT implementation

Table 1. Ablation study about the computation of the spectral patch
embeddings on MADOS

Model w/ projection (default) w/o projection

Scale-MAE 50.6 50.3
DINO-MC 51.6 48.5
Cross-Scale MAE 38.2 38.1

Reprojecting the features In the default setting of DE-
FLECT, the spectral pacth embeddings pass through a linear
layer shared across attention blocks, such that the dimension
of the spectral embeddings matches the dimension of
the spatial embeddings. In some cases (depending on
the number of multispectral channels), we can remove
the projection layer, and only select the right number of
statistics to have the right dimension. Table 1 shows the
difference of test metrics on MADOS with and without the
projection layer. It seems that having a projection layer can
slightly improve the performance of DEFLECT.

Pixel-set encoding In our setting, the pixel-set encoding
module randomly samples 10% of pixels within a patch (as
we assumed that the spectral information was redundant
within neighboring pixels). Table 2 shows the test metrics
obtained on MADOS and BurnScars, by sampling 50% of
the pixels, that do not significantly differ from a 10% sam-
pling. These results confirm our hypothesis that there is
strong spectral redundancy within a patch.
Standard attention VS Untangled Attention Fig. 1



Table 2. Ablation study about the pixel-set encoding module

MADOS
(mIoU)

BurnScars
(IoU)

Model 10%* 50% 10%* 50%

Scale-MAE 50.6 51.8 77.3 78.1
DINO-MC 51.6 50.3 75.6 75.0
Cross-Scale MAE 38.2 38.5 70.6 68.9

illustrates the differences between standard attention and
our uAtt module.

Norm of the displacements Figure 2 suggests a general
trend where larger changes in the norm of displacement
between frozen and fine-tuned models lead to increased vari-
ability in test accuracy. This indicates that significant mod-
ifications to the displacement norm can negatively impact
performance consistency across pretrained models. Notably,
DEFLECT, which barely changes the norm of the displace-
ment (after the first adapted layer, the norm can change with
respect to the frozen pretrained GFM), exhibits lower stan-
dard deviation in test accuracy, demonstrating more robust
results. This behavior highlights the potential advantage of
controlling displacement norm variations and will be further
investigated in future work.

C. Initialization strategies

HLSBurnScars To provide insights about the mechanisms
of GFM adaptation to multispectral images, we investi-
gated RGB weight initialization strategies, a topic often
overlooked. The default method, widely used in tools like
timm[3], involves repeating RGB weights across all bands,
regardless of their physical meaning. An alternative, intro-
duced by USat [1], initializes the RGB bands with pretrained
weights while assigning random initialization to the oth-
ers. For consistency with related works [2], we opted for
the first method, here called Repeat, over the RGB+random
approach. Tab. 3 summarizes the results on BurnScars, show-
ing that Repeat generally achieved higher scores, though the
performance varied significantly across PEFT methods. For
instance, with Scale-MAE, Repeat yielded a mIoU of 80.1%
under SLR (w.r.t 78.3% obtained with RGB+random) but
dropped to 70.5% when using DINO-MC (w.r.t 73.2% with
RGB+random). This variability suggests that while Repeat
can offer slight advantages, neither approach provides ro-
bust, consistent results across methods. DEFLECT, that
circumvents the choice of an initialization strategy, may thus
provide a more reliable framework, avoiding the need for a
sensitive selection of hyperparameters. Further results are
detailed in the Supplementary Material.

MADOS Table 4 reveals that for MADOS, the

Table 3. Performance metrics on BurnScars for two initializa-
tion strategies across different PEFT methods, showing similar
but inconsistent results. This variability suggests that alternative
approaches, such as DEFLECT, which do not depend on specific
initialization schemes, may offer more stable and reliable perfor-
mance in geospatial tasks.

Model Tuning Strategy Repeat
RGB+
random

Scale-MAE

Finetuning (Oracle) 79.1 75.5
Frozen 76.2 68.9
BitFit 76.0 72.0
SLR 80.1 78.3

DINO-MC

Finetuning (Oracle) 76.5 76.9
Frozen 70.4 66.9
BitFit 69.8 66.6
SLR 70.5 73.2

Cross-Scale MAE

Finetuning (Oracle) 78.1 75.8
Frozen 68.0 59.9
BitFit 67.9 68.5
SLR 63.7 68.2

”RGB+random” initialization seems to perform slightly
better across most methods. This trend further supports
our hypothesis that different initialization strategies are not
consistently reliable across different tasks. For example,
”RGB+random” leads to higher mIoU scores in Scale-MAE
(e.g. 53.1% vs. 47.0% for finetuning) and DINO-MC (e.g.
64.26% vs. 61.6% for finetuning). However, when we
look at BurnScars (as shown in Table 5 in the main paper),
the ”Repeat” initialization yields better results on average,
further emphasizing the variability of these initialization
strategies.

This inconsistency confirms our key point: relying on spe-
cific initialization strategies is not ideal for stable, robust
performance. Instead, DEFLECT, which operates indepen-
dently of initialization schemes, proves to be a more reliable
approach across diverse tasks, as it yields more stable results.
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(a) Low-rank adaptation with stan-
dard self-attention

(b) DEFLECT adaptation with untangled attention

Figure 1. Illustration of standard attention and our untangled attention module in the context of PEFT.

Figure 2. Standard deviation across models as a function of the average absolute difference of norm displacement.



Table 4. Performance metrics on MADOS for two initialization
strategies across different PEFT methods. The table highlights the
slight superiority of the RGB+random initialization, though results
are inconsistent across datasets. This further supports our argument
that reliance on initialization strategies can lead to unstable perfor-
mance. In contrast, DEFLECT, which does not depend on specific
initialization, demonstrates more reliable and stable results.

Model Tuning Strategy Repeat
RGB+
random

Scale-MAE

Finetuning (Oracle) 47.0 53.1
Frozen 36.0 44.4
BitFit 19.4 48.1
SLR 46.5 46.9

DINO-MC

Finetuning (Oracle) 61.6 64.3
Frozen 51.8 53.9
BitFit 53.0 54.1
SLR 3.5 5.8

Cross-Scale MAE

Finetuning (Oracle) 47.2 50.1
Frozen 41.4 43.5
BitFit 40.3 39.8
SLR 35.6 36.1
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