
DATA: Domain-And-Time Alignment for High-Quality Feature Fusion in
Collaborative Perception

Supplementary Material

1. Detailed Information about Module Designs

1.1. Observability-constrained Discriminator Im-
plementation

The observability-constrained discriminator (OD) employs
a lightweight convolutional architecture to distinguish be-
tween ego and collaborative domains. The discriminator
consists of two convolutional layers: a first layer with 256
channels and kernel size 1×1 followed by ReLU activation,
and a final layer with a single output channel and kernel size
1× 1 that outputs predicted domain labels.

1.2. Multi-scale Feature Processing for BEV Repre-
sentation

The multi-scale feature processing module transforms fea-
tures at different spatial resolutions to form a comprehen-
sive Bird’s Eye View (BEV) representation.

Assume that three scales of features, which are denoted
as Flarge ∈ R64×H×W , Fmiddle ∈ R128×H

2 ×W
2 , and Fsmall ∈

R256×H
4 ×W

4 , are extracted from the backbone network, and
then the conversion to BEV features follows a systematic
process.

Each scale undergoes a deconvolution operation to unify
spatial and channel dimensions, and this operation can be
expressed as

Ularge = Θ1(Flarge), (1)

Umiddle = Θ2(Fmiddle), (2)

Usmall = Θ3(Fsmall), (3)

where Θ1, Θ2, and Θ3 represent deconvolution networks
with strides 1, 2, and 4, respectively. Each deconvolution
network consists of a transposed convolution layer, batch
normalization, and ReLU activation, projecting the features
to a uniform spatial resolution of H × W and channel di-
mension of 128.

The final BEV representation is formed by concatenat-
ing these upsampled features along the channel dimension,
formulated as HBEV = [Ularge, Umiddle, Usmall]. The result-
ing BEV feature map HBEV ∈ R384×H×W integrates infor-
mation from all scales while maintaining consistent spatial
dimensions. This approach, which is essential for accurate
3D object detection in the BEV space, preserves both fine-
grained details from larger-scale features and semantic con-
text from smaller-scale features.

1.3. Computational Complexity Analysis: Block-
Wise vs. Global Computation

We analyze the computational complexity of block-wise
computation versus global computation for calculating co-
sine similarity between feature maps. Consider feature
maps of size H × W with C channels, then for the block-
wise approach, we use the window size l × l, where l is
divisible by both H and W for simplicity. Herein, fp de-
notes the predicted feature map and fgt denotes the ground
truth feature map.

1.3.1. Global Computation
For global computation across the entire feature map, the
computational cost is listed as follows:

(i) Computing vector dot products ⟨fp, fgt⟩ requires C ×
H×W multiplications and (C−1)×H×W additions.

(ii) Computing ℓ2 norms ∥fp∥2 and ∥fgt∥2 requires 2 ×
C×H×W multiplications for squaring each element,
2× (C − 1)×H ×W additions for summing squared
elements, and 2×H ×W square root operations.

(iii) Computing cosine similarity s =
⟨fp,fgt⟩

∥fp∥2·∥fgt∥2
requires

H ×W divisions and H ×W multiplications.

(iv) Finally, computing MSE loss (s−1)2 requires H×W
subtractions, H × W squaring operations, and (H ×
W − 1) additions for the final sum.

In total, the global computation requires approximately
(3C + 2) × H × W multiplications, (3C − 1) × H × W
additions, 2×H ×W square roots, and H ×W divisions,
yielding a computational complexity of O(C ×H ×W).

1.3.2. Block-Wise Computation with Multi-Window
Strategy

Our approach uses two complementary window partitioning
strategies:

The first strategy (W1 described in Eq. (11)) applies
standard partitioning, yielding ⌊H/l⌋ × ⌊W/l⌋ windows.
The second strategy (W2 described in Eq. (12)) employs
offset partitioning (by l/2 compared with W1), yielding
⌊(H − l)/l⌋ × ⌊(W − l)/l⌋ windows due to the offset
introduced along the top, bottom, left, and right bound-
aries of the feature map. For typical dimensions in our
implementation (H = 256,W = 128, l = 16), we have
|W1| = 16× 8 = 128 windows and |W2| = 15× 7 = 105
windows.

For each window in either strategy, computing dot prod-
ucts requires C × l × l multiplications and (C − 1)× l × l
additions. ℓ2 norm computation requires 2×C × l× l mul-
tiplications, 2 × (C − 1) × l × l additions, and 2 × l × l
square roots. Computing cosine similarity requires l× l di-
visions and l× l multiplications, and MSE loss computation
requires l × l subtractions and l × l multiplications.

The total computation across both window strategies is[
⌊H
l
⌋ × ⌊W

l
⌋+ ⌊H − l

l
⌋ × ⌊W − l

l
⌋
]
×

[(3C + 2)× l × l].

(4)

With our typical dimensions, this is approximately 1.8 ×
(3C + 2)×H ×W , giving a computational complexity of
O(C × H × W). This is asymptotically equivalent to the
global approach.

1.3.3. Advantages of Block-Wise Computation
The block-wise approach with dual window strategy offers
several significant advantages in temporal feature alignment
as follows:

First, the windowed computation provides stronger
learning signals for capturing localized motion patterns, en-
abling the model to better distinguish between different mo-
tion behaviors within the same scene. Traffic scenes exhibit
both structured patterns and individual object movements,
which benefit from this localized analysis approach.

Second, window-based computation rebalances the in-
fluence of foreground objects in similarity calculations, ef-
fectively counteracting the predominant impact of back-
ground regions that typically dominate the feature space.
Consider that an object spans m× n pixels, where m,n<l.
In global similarity computation, the computation of fore-
ground objects would be proportional to (m×n)/(H×W)
when calculating the overall cosine similarity metric. How-
ever, in the window-based approach, where similarity is cal-
culated independently for each window before computing
the MSE loss, the foreground objects make more contri-
bution to the similarity, reaching (m × n)/(l × l). This
would become even more significant when window size l
is smaller than the feature dimensions H and W . This en-
hanced representation of foreground elements strengthens
motion pattern modeling for salient objects, which typically
occupy smaller spatial regions compared to the background.

Third, the complementary window partitioning strategies
ensure comprehensive spatial coverage. Given the window
size l and the offset l/2, any object of size up to l × l will
be fully contained within at least one window from either
partitioning strategy, regardless of its position in the feature
map. This property prevents foreground objects from be-
ing fragmented across multiple windows, providing coher-
ent supervision signals for learning object motion patterns.

Fourth, the block-wise approach addresses the challenge
of balancing attention between foreground and background
regions. By processing feature maps in window-based
units, the model allocates more balanced computational at-
tention across the feature space, rather than being domi-
nated by background regions that typically occupy the ma-
jority of the scene. As demonstrated in our experimental re-
sults, this approach significantly improves temporal align-
ment quality and detection performance, particularly for
foreground objects of interest in autonomous driving sce-
narios.

1.4. StructConv: Multi-directional Structure En-
hancement

The StructConv operation employs five specialized 3 × 3
convolutions that collectively enhance structural details in
foreground features. Each targets specific geometric pat-
terns while maintaining computational efficiency through
parameter combination. We detail these specialized con-
volutions as follows.

Feature Preservation Convolution. This convolution
maintains the original feature representation by computing
standard weighted sums across neighborhood pixels. This
serves as the foundation upon which structural enhance-
ments are built while preserving essential intensity infor-
mation.

Center-Surround Contrast Convolution. This con-
volution enhances local contrast by modifying the center
weight of the kernel to be the negative sum of all surround-
ing weights. This operation highlights intensity transitions
at feature boundaries and enhances object contours.

Horizontal Edge Convolution. This convolution de-
tects horizontal structures by placing positive weights on the
left column, zeros in the center column, and exact negatives
of the left-side weights on the right column of the kernel.
This symmetrical weight pattern creates a directional gra-
dient detector that emphasizes horizontal edges commonly
found in vehicle appearance.

Vertical Edge Convolution. This convolution captures
vertical features through a principle similar to the Horizon-
tal Edge Convolution, but with positive weights at the top
row, zeros in the middle row, and exact negatives of the top-
row weights at the bottom row of the kernel. This arrange-
ment enhances vertical boundaries and surface transitions
in the scene.

Diagonal Structure Convolution. This convolution
identifies corner features and angular transitions through a
specialized weight permutation. The implementation sub-
tracts a rotated version of the original kernel from itself,
creating a pattern that responds strongly to diagonal inten-
sity gradients present at object corners.

While these convolutions effectively enhance structural
details, they may introduce spurious foreground features

that may negatively impact detection. To address this, the
enhanced features undergo a coupled height-semantic ver-
ification process that selectively preserves structural en-
hancements while suppressing false features. This verifi-
cation leverages the inherent channel-wise height and se-
mantic correlations in pillar-encoded features to ensure that
only structurally reasonable enhancements are retained.

The five convolutions are efficiently implemented by
combining their weights and biases into a single operation,
providing comprehensive structural enhancement without
the computational overhead of separate convolutions.

1.5. Foreground Estimator Implementation
The foreground estimator Φ(·), utilized in both CDAM and
IFAM, is implemented as a lightweight network to identify
foreground regions. The network architecture consists of a
3 × 3 convolution that halves the input channel dimension,
followed by batch normalization and ReLU activation, and
a final 1×1 convolution with sigmoid activation to produce
single-channel output.

Herein, Φ(·) is supervised by the foreground occupancy
loss function that computes a weighted focal loss between
predicted foreground maps and foreground labels across
spatial locations. This loss function emphasizes the impor-
tance of correctly identifying occupied regions while ac-
counting for the class imbalance between foreground and
background pixels.

Then the foreground occupancy loss Lforeground can be
formulated as

Lforeground =

S∑
s=1

ws · Lfocal(Ms,M
gt
s), (5)

where S is the total number of spatial locations in the
feature map, Ms denotes the predicted foreground value
from the foreground estimator at location s, and M gt

s is the
corresponding ground truth foreground label derived from
bounding boxes.

The weighting factor ws is defined as

ws =
M gt

s · wpos + (1−M gt
s) · wneg

max
(∑S

s=1 M
gt
s , 1

) , (6)

where wpos = 2 is the weight for positive samples and
wneg = 1 is the weight for negative samples. The denomi-
nator normalizes the weights by the total number of positive
samples, with a minimum value of 1 to prevent division by
zero.

The focal loss Lfocal can be calculated as

Lfocal(p, y) =− (y · 0.25 · (1− p)2 · log(p)
+ (1− y) · (1− α) · p2 · log(1− p)).

(7)

This supervisory signal guides the foreground estimator
to accurately predict foreground occupancy while handling

the inherent imbalance between foreground and background
regions in the scene.

2. Detailed Dataset Information and Experi-
ment Configuration

2.1. Detailed Dataset Information
Experiments are conducted on three collaborative per-
ception datasets: DAIR-V2X-C [8], V2XSET [7], and
V2XSIM [4]. (i) DAIR-V2X-C, which focuses on vehicle-
infrastructure collaborative data, is a subset of DAIR-V2X
and contains 39,000 frames. Following the official bench-
mark in [8], a synchronized subset VIC-Sync with 9,311
frame pairs is split into training/validation/testing sets in a
ratio of 5:2:3. We adopt the complemented annotations [5],
with the perception range is set to x ∈ [−102.4m, 102.4m]
and y ∈ [−51.2m, 51.2m]. (ii) V2XSIM is a cooper-
ative perception dataset co-simulated by SUMO [3] and
CARLA [1]. The dataset consists of 10,000 frames with
501K annotated boxes, split into 8,000/1,000/1,000 for
training/validation/testing. The perception range is set to
x ∈ [−32m, 32m] and y ∈ [−32m, 32m]. (iii) V2XSet,
co-simulated by OpenCDA [6] and CARLA, is a V2X
dataset with realistic noise simulation. The dataset con-
tains 11,447 frames, split into 6,694/1,920/2,833 for train-
ing/validation/testing. The perception range is set to x ∈
[−140m, 140m] and y ∈ [−40m, 40m].

2.2. Three-stage Training and Loss Function
The DATA framework employs a sequential three-stage
training strategy, each with specialized loss functions tai-
lored to specific aspects of the model.

2.2.1. Stage 1: Domain Alignment and Feature Extrac-
tion

In the first stage, we jointly optimize the encoder, CDAM,
IFAM, and detection head by using synchronized data. The
total loss function for this stage is formulated as

Lstage1 = Ldet + λfore · Lforeground + λdomain · Ldomain (8)

where Ldet is the detection loss comprising three compo-
nents as

Ldet = Lcls + λreg · Lreg + λdir · Ldir, (9)

where Lcls denotes a Sigmoid Focal Loss for classification,
Lreg represents a Weighted Smooth ℓ1 Loss for regression,
and Ldir indicates a Weighted Softmax Classification Loss
for direction prediction. The weighting factors are set to
λreg = 2.0, λdir = 0.2, λfore = 0.4, and λdomain = 1.0.

2.2.2. Stage 2: Temporal Alignment
The second stage focuses on training PTAM with asyn-
chronous data while freezing all parameters from the first

stage. The loss function is defined as

Lstage2 = Ldet + λtemporal · Ltemporal, (10)

where the detection loss Ldet maintains the same form and
parameters as in Stage 1, while Ltemporal is the multi-scale
and multi-window temporal alignment loss described at the
end of Section 3.3.3. Herein, we set λtemporal = 1.0 to bal-
ance the influence of detection and temporal alignment ob-
jectives.

2.2.3. Stage 3: Compression Network
The final stage trains the transmission compression and re-
covery network by using asynchronous data with all param-
eters from previous stages frozen. The loss function com-
bines detection objectives with reconstruction fidelity as

Lstage3 = Ldet + λrecon · Lrecon, (11)

where the detection loss Ldet remains consistent with the
previous stages, while Lrecon is implemented as a Mean
Squared Error (MSE) loss that quantifies the feature re-
construction quality after compression. The compression
network adopts a UNet architecture to maintain spatial fea-
ture relationships during compression and decompression.
Herein, we set λrecon = 1.0.

For network optimization, the Adam optimizer [2] is
adopted across all three stages. In the first stage, the ini-
tial learning rate is set to 0.002 with 10× decay at epochs
15 and 30, and the models are trained for 40 epochs. The
second and third stages both employ a fixed learning rate
of 0.001 for 10 epochs. A batch size of 2 is used through-
out the entire training process. This sequential training ap-
proach allows each component to specialize in its intended
functionality while maintaining overall system coherence.

3. Visualization Results
Notably, in all visualization results below, red boxes rep-
resent prediction results, and green boxes represent ground
truth.

3.1. Qualitative Comparison Under Asynchronous
Conditions

3.1.1. Turning Scenario
Figure 1 illustrates the delay compensation performance of
DATA and FFNet in turning scenarios at 300 ms and 500 ms
delays. Since turning generally involves variable-speed mo-
tion, there are higher requirements for the network to model
complex movements. In Figure 1, it shows that DATA ex-
hibits good prediction performance under these severely
delayed conditions, while the prediction results of FFNet
demonstrate limited capability to accurately compensate the
mismatches under such severely delayed conditions. Also,
the ablation results of PTAM show significant performance

improvements of detection when using PTAM, demonstrat-
ing the robustness of PTAM to acquire high-quality features
of temporal alignment.

3.1.2. Intersection Scenario
The figure 2 further exhibits the performance of DATA
and FFNet under conditions with intersecting traffic flows,
and this requires models to simultaneously capture motion
trends in different regions. As observed from right bottom
subgraph of Figure 2, the misalignment caused by latency
can reach one vehicle length, posing significant challenges
to reliable perception in autonomous driving. After imple-
menting PTAM, DATA successfully achieves displacement
compensation in both directions (horizontal and vertical di-
rections in the figure), exhibiting both local and global mo-
tion modeling capability. In this scenario, FFNet effectively
compensates for the traffic flow in the vertical direction but
performs inadequately in compensation for horizontal dis-
placement, reflecting potential deficiencies in local motion
modeling that may result from its global supervision ap-
proach.

3.2. Qualitative Comparison Under Synchronous
Conditions

Figure 3 illustrates a scenario from the DAIR-V2X dataset
where object groups are positioned in three distinct regions:
near the roadside infrastructure (collaborator), around the
ego vehicle, and in the intermediate zone between them.
This configuration creates three distinct perceptual regions:
areas predominantly observed by the ego vehicle, areas
mainly observed by the collaborator, and overlapping ar-
eas observed by both agents. This mixed observability pat-
tern presents a significant challenge to the perception sys-
tem’s ability to extract domain-invariant features for robust
perception. DATA, FFNet, and Where2comm all demon-
strate effective detection in areas where both the point
clouds of ego and collaborator exist. However, FFNet
and Where2comm generate false positives in regions dom-
inated by point clouds either from ego egent or collabora-
tive agent, while DATA maintains accurate detection per-
formance. This demonstrates that DATA effectively learns
domain-invariant features through density-consistent and
observability-consistent domain alignment, exhibiting sta-
ble detection performance in scenarios with significant do-
main gaps.

Figure 5 presents a demanding collaborative perception
scenario with a 280 m range and noise interference from
the V2XSET dataset. The scene contains dense traffic con-
ditions with numerous occlusions and point cloud sparsity
at extended distances, creating an ideal testing environment
for evaluating collaborative perception capabilities. FFNet
and Where2comm achieve good perception results in re-
gions where collaborative agents provide reliable informa-
tion, but exhibit detection inaccuracies and false positives at

greater distances due to point cloud sparsity and noise inter-
ference. DATA effectively mitigates noise interference and
the challenges of sparse long-distance point clouds through
learned domain-invariant features and foreground enhance-
ment, achieving robust detection performance across the en-
tire extended range. Figure 4 similarly demonstrates a noisy
scenario from V2XSIM with occlusions and sparse point
clouds. DATA achieves effective perception performance,
while FFNet and Where2comm exhibit missed detections
and false positives in regions with sparse point clouds, fur-
ther validating DATA’s robust and reliable perception capa-
bilities.

References
[1] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio

Lopez, and Vladlen Koltun. Carla: An open urban driv-
ing simulator. In Conference on robot learning, pages 1–16.
PMLR, 2017. 3

[2] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 4

[3] Daniel Krajzewicz, Jakob Erdmann, Michael Behrisch, and
Laura Bieker. Recent development and applications of sumo-
simulation of urban mobility. International journal on ad-
vances in systems and measurements, 5(3&4), 2012. 3

[4] Yiming Li, Dekun Ma, Ziyan An, Zixun Wang, Yiqi Zhong,
Siheng Chen, and Chen Feng. V2x-sim: Multi-agent col-
laborative perception dataset and benchmark for autonomous
driving. IEEE Robotics and Automation Letters, 7(4):10914–
10921, 2022. 3

[5] Yifan Lu, Quanhao Li, Baoan Liu, Mehrdad Dianati, Chen
Feng, Siheng Chen, and Yanfeng Wang. Robust collabora-
tive 3d object detection in presence of pose errors. In 2023
IEEE International Conference on Robotics and Automation
(ICRA), pages 4812–4818. IEEE, 2023. 3

[6] Runsheng Xu, Yi Guo, Xu Han, Xin Xia, Hao Xiang, and Jiaqi
Ma. Opencda: an open cooperative driving automation frame-
work integrated with co-simulation. In 2021 IEEE Interna-
tional Intelligent Transportation Systems Conference (ITSC),
pages 1155–1162. IEEE, 2021. 3

[7] Runsheng Xu, Hao Xiang, Zhengzhong Tu, Xin Xia, Ming-
Hsuan Yang, and Jiaqi Ma. V2x-vit: Vehicle-to-everything
cooperative perception with vision transformer. In European
conference on computer vision, pages 107–124. Springer,
2022. 3

[8] Haibao Yu, Yizhen Luo, Mao Shu, Yiyi Huo, Zebang Yang,
Yifeng Shi, Zhenglong Guo, Hanyu Li, Xing Hu, Jirui
Yuan, et al. Dair-v2x: A large-scale dataset for vehicle-
infrastructure cooperative 3d object detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 21361–21370, 2022. 3

Figure 1. Visualization of different methods under various latency (Scene 1: Turning). This figure illustrates the collaborative process
between a vehicle and the road infrastructure in a turning scenario. DATA showcases impressive ability to model variable-speed movements
evidenced by precise compensation under severe latency. A significant improvement can be observed by adding PTAM to align the temporal
desynchrony.

Figure 2. Visualization of different methods under various latency (Scene 2: Intersection). This figure depicts a scene where traffic flows
intersect, challenging models to simultaneously capture motion trends in different regions. The result showcases that DATA aligns motions
of two distinct directions properly, proving reliable capabilities in processing motion information of a scene-wide region.

Figure 3. Visualization of different methods on DAIR-V2X. A vehicle-infrastructure collaborative perception scenario from DAIR-V2X
shows that DATA outperforms FFNet and Where2comm by maintaining accurate detection across all regions despite domain gaps, demon-
strating superior domain-invariant feature extraction under mixed observability challenges.

Figure 4. Visualization of different methods on V2XSIM. In a complex V2XSIM environment with two vehicles and infrastructure
collaboration, DATA delivers superior perception by avoiding the missed detections and false positives that plague competitors when
handling occluded objects and sparse point clouds.

Figure 5. Visualization of different methods on V2XSET. In a demanding V2XSET scenario with two vehicles and roadside infrastructure
collaborating, DATA outperforms competitors by accurately detecting objects despite dense traffic, occlusions, and sparse distant point
clouds, demonstrating superior noise mitigation and domain-invariant feature learning.

Symbol Definition Section/Module
3.1 Problem Formulation and Overall Architecture
N Number of agents in collaborative perception sys-

tem
Problem Formu-
lation

i, j Subscripts denoting ego agent and collaborative
agents, where i ̸= j

Problem Formu-
lation

Xi(t) Latest data of ego agent at current time t Problem Formu-
lation

Xj(t− τ) Data transmitted by collaborative agents at times-
tamp t− τ

Problem Formu-
lation

Xj(t− τ −∆T) Data of collaborative agent at timestamp t−τ−∆T Problem Formu-
lation

τ Transmission delay Problem Formu-
lation

∆T Time interval Problem Formu-
lation

3.2.1 Proximal-region Hierarchical Downsampling (PHD)
Oi Set of all objects observable to ego agent i CDAM-PHD
N total

i Total number of observable objects CDAM-PHD
ok k-th object CDAM-PHD
Oprox

i Objects within the proximal region CDAM-PHD
di(ok) Distance from ego agent i to k-th object CDAM-PHD
dth Distance threshold CDAM-PHD
Nproc Number of objects selected from Oprox

i for subse-
quent processing

CDAM-PHD

Nmax Predefined maximum number of objects CDAM-PHD
Bout

i,k Oriented bounding box of k-th object CDAM-PHD
Bin

i,k Inner bounding box with scaling factor α CDAM-PHD
(xk, yk, zk) Center coordinates of k-th object CDAM-PHD
(hk, wk, lk) Dimensions (height, width, length) of k-th object CDAM-PHD
θk Orientation of k-th object CDAM-PHD
α Scaling factor to adjust bounding box dimensions,

α ∈ (0, 1)
CDAM-PHD

Rin
i,k, R

out
i,k Point sets in inner and outer regions CDAM-PHD

βin, βout High and conservative downsampling ratios for in-
ner and outer regions

CDAM-PHD

FPS(·, ·) Farthest Point Sampling operation CDAM-PHD
R̃in

i,k, R̃
out
i,k Downsampled inner and outer regions CDAM-PHD

P̃i,k Point clouds of k-th object after hierarchical down-
sampling

CDAM-PHD

Table 1. Notation Table for DATA Paper - Part I: Problem Formulation and PHD

Symbol Definition Section/Module
3.2.2 Observability-constrained Discriminator (OD)
Hi, Hj BEV features of ego and collaborative agents CDAM-OD
C,H,W Channel dimension, height, and width of features CDAM-OD
Mi,Mj Observability maps, Mi,Mj ∈ R1×H×W CDAM-OD
Φ(·) Foreground estimator CDAM-OD
Hj→i,Mj→i Collaborative features and observability map projected

onto ego coordinates
CDAM-OD

V Set of valid grids in transformed feature map CDAM-OD
Hcomp

j ,M comp
j Complemented feature and observability map CDAM-OD

IV Indicator function (equals 1 for points in V and 0 for
others)

CDAM-OD

W Observability weighting map, W ∈ R1×H×W CDAM-OD
Ldomain Domain alignment objective CDAM-OD
S Set of all spatial positions CDAM-OD
sp One spatial position CDAM-OD
Wflat Flattened observability weighting map CDAM-OD
Ψθ Feature extractor (point clouds as input and BEV fea-

tures as output)
CDAM-OD

Dµ Discriminator CDAM-OD
LBCE Binary cross-entropy loss CDAM-OD
Z Domain label (0 for ego agent and 1 for collaborative

agent)
CDAM-OD

γ Negative scaling factor in gradient reversal layer (γ =
−0.1)

CDAM-OD

Table 2. Notation Table for DATA Paper - Part II: Observability-constrained Discriminator

Symbol Definition Section/Module
3.3 Progressive Temporal Alignment Module (PTAM)
Fj(t, x) Features at collaborative agent at time t and posi-

tion x
PTAM

v(t−∆t, x) Velocity field describing motion of features at time
t−∆t

PTAM

∆t Time interval within range of typical transmission
delay

PTAM

∆p Motion field representing velocity, ∆p ∈ R2×H×W PTAM
ξ Temporal scaling factor corresponding to ∆t PTAM
F inter
j Intermediate feature predicted by collaborative

agent
PTAM

F̂j(t− τ) Feature from collaborative agent j at time t− τ , as
received by ego agent

PTAM

F̂ inter
j Intermediate feature from collaborative agent j, as

received by ego agent
PTAM

F̂j(t) Temporally aligned features PTAM
Flatest, Fprev Latest feature and its previous feature PTAM
∆F Temporal feature difference, ∆F = Flatest−Fprev PTAM
wsamp Sampling weight, wsamp ∈ R1×H×W PTAM
fwarp(·) Bilinear sampling operation PTAM
s1, s2 Superscripts indicating first stage and second stage PTAM
∆M Motion difference field PTAM
fM Global context vector PTAM
fT Temporal encoding with sinusoidal positional em-

beddings
PTAM

3.3.3 Multi-window Self-supervised Training Strategy
s Spatial scale index PTAM Training
hs, ws Feature plane size at spatial scale s PTAM Training
l Window size PTAM Training
W1,W2 Two complementary window partitioning strategies PTAM Training
wm′,n′ Window with top-left corner at position (m′, n′) PTAM Training
wp′,q′ Window with top-left corner at position (p′, q′) PTAM Training
Nwindow Total number of windows PTAM Training
F gt
j Ground truth features PTAM Training

cos(·, ·) Cosine similarity between predictions and ground
truth features

PTAM Training

Ls
inter,Ls

final Loss functions for intermediate and final predic-
tions at scale s

PTAM Training

Ltemporal Total temporal alignment loss computed across all
three scales

PTAM Training

Table 3. Notation Table for DATA Paper - Part III: Progressive Temporal Alignment Module

Symbol Definition Section/Module
3.4 Instance-focused Feature Aggregation Module (IFAM)
Ha BEV feature of a-th agent, Ha ∈ RC×H×W IFAM
Ma Foreground mask, Ma = Φ(Ha) IFAM
Hfore

a , Hback
a Foreground and background features IFAM

Henh
a Enhanced foreground features after structural convolu-

tion
IFAM

StructConv(·) Structural convolution with specialized convolutions IFAM
Hcat

a Concatenated features, Hcat
a ∈ R2C×H×W IFAM

W s
a ,W

c
a Spatial attention and channel attention IFAM

W init
a Initial attention weights, W init

a = W s
a ⊕W c

a IFAM
W verif

a Verification weights IFAM
CS Channel shuffle operation IFAM
GConv(·) Group convolution for independent weight generation IFAM
Hverif

a Verified foreground feature IFAM
Hrefined

a Individually refined BEV features IFAM
ϵ Learnable parameter balancing contribution of back-

ground features
IFAM

4. Experiments and General Symbols
AP50,AP70 Average Precision at IoU thresholds of 0.50 and 0.70 Evaluation Met-

rics
IoU Intersection-over-Union Evaluation Met-

rics
µpos, σpos Mean and standard deviation for position noise Noise Modeling
µrot, σrot Mean and standard deviation for orientation noise Noise Modeling
σlocal Standard deviation for localization noise Robustness Test-

ing
σhead Standard deviation for heading noise Robustness Test-

ing
⊙ Element-wise product General Opera-

tions
⊕ Concatenation operation General Opera-

tions
[·] Concatenation along specified dimension General Opera-

tions
| · | Cardinality of a set General Opera-

tions
softmax(·) Softmax function Activation Func-

tions
ReLU(·) ReLU activation function Activation Func-

tions
Sigmoid(·) Sigmoid function Activation Func-

tions
MLP(·) Multi-layer perceptron Network Struc-

tures
Conv1×1(·) 1× 1 convolution operation Network Struc-

tures

Table 4. Notation Table for DATA Paper - Part IV: IFAM and General Symbols

	Detailed Information about Module Designs
	Observability-constrained Discriminator Implementation
	Multi-scale Feature Processing for BEV Representation
	Computational Complexity Analysis: Block-Wise vs. Global Computation
	Global Computation
	Block-Wise Computation with Multi-Window Strategy
	Advantages of Block-Wise Computation

	StructConv: Multi-directional Structure Enhancement
	Foreground Estimator Implementation

	Detailed Dataset Information and Experiment Configuration
	Detailed Dataset Information
	Three-stage Training and Loss Function
	Stage 1: Domain Alignment and Feature Extraction
	Stage 2: Temporal Alignment
	Stage 3: Compression Network

	Visualization Results
	Qualitative Comparison Under Asynchronous Conditions
	Turning Scenario
	Intersection Scenario

	Qualitative Comparison Under Synchronous Conditions

