Supplementary Materials of MMCR: Benchmarking Cross-Source Reasoning in
Scientific Papers

A. Benchmark Details

We appreciate the reviewer’s thoughtful comment on
MMCR’s classification as a reasoning benchmark. We re-
spectfully maintain that MMCR tests reasoning capabilities
as it aligns with the reviewer’s cited definition of reason-
ing as "multi-step/multi-hop question answering.”Our defi-
nition of cross-source reasoning” in MMCR refers to ques-
tions that require synthesizing information from multiple
sources within scientific papers to derive answers that can-
not be obtained from any single source alone.

Taking the question in Figure S.7 as an example, the
reasoning process in MMCR directly parallels HotpotQA'’s
definition of “inferring the bridge entity to complete the
2nd-hop question.” As illustrated in Figure S.7, answering
MMCR questions typically requires first inferring which
specific figure or table is being referenced through textual
descriptions (e.g., ’the t-SNE visualization of CLIP encod-
ing features”). This constitutes the first reasoning hop and
establishes the critical bridge entity. Only after successfully
identifying this bridge entity can the model proceed to the
second hop, extracting relevant information from the iden-
tified sources and synthesizing it to derive the answer.

The reasoning complexity is further amplified by scien-
tific papers’ high information density (19 pages average),
input as pure images rather than OCR-processed text, and
questions requiring numerical reasoning and calculations.
The benchmark comprises scientific papers across seven
academic subjects of artificial intelligence, with questions
systematically categorized into ten distinct types based on
their required evidence sources. The distribution of these
categories is illustrated in Fig. S.1. Representative ex-
amples demonstrating each evidence type are presented in
Figs. S.5to S.14.

B. Evaluation Details

B.1. Evaluation Prompt

Figure S.2 presents the prompts with and without the use
of Chain-of-Thought (CoT). For InternVL2.5, we employed
the official CoT prompt released by the developers. For the
remaining benchmark models—MiniCpm-o 2.6, Qwen2.5-
VL, and Idefics3—we implemented a unified CoT prompt
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Figure S.1. Distribution of Questions by Evidence Types and Re-
search Domains. (a) Percentage distribution across ten evidence
source types. (b) Distribution across seven Al research subjects.

to ensure methodological consistency across experiments.



Evaluation Prompts: CoT Prompt

CoT Prompt for InternVL-2.5:

“Your task is to answer the question below. Give
step by step reasoning before you answer, and when
you’re ready to answer, please use the format:
‘\Final answer: ... \’

Question: {question}”

CoT Prompt for MiniCpm-o 2.6, Qwen2.5-VL,
Idefics3:

“Carefully read the following multichoice question,
solve it step by step and finally pick the option asso-
ciated with the correct answer in the format of ‘An-
swer: Selected option.”

w/o CoT Prompt:
“Please select the correct answer from the options
above.”

Figure S.2. Evaluation Prompt

B.2. Answer Option Inference Details for LLLM Re-
sponses

B.2.1. Implementation Details

Unlike existing benchmarks that employ LLM-based meth-
ods for open-ended response extraction, our benchmark uti-
lizes a heuristic rule-based approach for multiple-choice an-
swer inference.

The rule-based approach for multiple-choice answer in-
ference comprises two stages: primary option-based infer-
ence, followed by text-based inference as a fallback strat-
egy. Specifically, the option-based inference method counts
the occurrence of option identifiers (A, B, C, etc.) in the re-
sponse. A valid inference is made when exactly one option
identifier is detected. When option-based inference fails,
the text-based inference serves as a fallback mechanism.
It converts both the model response and choice contents to
lowercase before searching for exact matches of choice con-
tent within the response. This method succeeds only when
precisely one choice content is found in the processed re-
sponse.

This two-stage approach ensures robust answer extrac-
tion while maintaining high precision through strict match-
ing criteria. When both methods fail to identify a unique
answer, false will be returned to indicate inference failure.

B.2.2. Existing Problems

The rule-based approach for multiple-choice answer in-
ference offers efficiency by eliminating additional LLM
calls. However, it occasionally fails to accurately extract
responses despite correct model reasoning. We categorize

such cases as Matching Errors. As shown in Tab. S.1. The
error distribution analysis demonstrates that extraction fail-
ures represent a negligible proportion of the total errors,
with only two instances identified across all cases. Fig-
ure S.21 illustrates one representative example of such a
Matching Error.

Matching errors ‘ Total error cases ‘ Error Rate
2 | 109 | 18%

Table S.1. Example Distribution of Matching Errors in Response
Extraction from GPT-40.The table shows the proportion of match-
ing errors among all error cases, demonstrating that extraction fail-
ures constitute only 1.8% of total errors identified in our evalua-
tion.

C. Extended Analysis
C.1. Analysis of Error Cases

We conducted systematic error analysis of GPT-40’s per-
formance on our benchmark to investigate its limitations in
cross-source reasoning within scientific papers. Through
manual examination of 109 incorrect responses, we identi-
fied seven distinct error categories. A comprehensive anal-
ysis of all error categories, accompanied by representative
examples, is presented in (Figs. S.15 to S.21).

C.2. Performance Across Evidence Types

We analyze model performance across different evidence
source types, with detailed results presented in Fig. S.3.
The radar chart visualization demonstrates GPT-40’s con-
sistent superiority across most categories compared to the
other five VLMs. Particularly in text comprehension tasks,
both QwenVL-2.5-72B and GPT-40 achieve notable accu-
racy (68.57 and 65.71 respectively), likely benefiting from
their extensive pretraining corpora.

However, substantial performance degradation is ob-
served in cross-source integration tasks featured in MMCR,
particularly in Figure-Text Comprehension, Figure-Table
Comprehension, and Multi-Figure Comprehension, where
the majority of VLMs achieve accuracy scores below 50.
The pronounced disparity between single-source and cross-
source task performance reveals a fundamental limitation:
while MLLMs exhibit proficiency in individual modal-
ity processing, they demonstrate reduced effectiveness in
tasks requiring synthesis of information from heteroge-
neous sources.

C.3. Annotation requirements

Before initiating the formal annotation process, a system-
atic taxonomy of task types and subject domains was estab-
lished. This methodological framework ensures annotation
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Figure S.3. Fine-grained results on various evidence source types.

consistency and maintains rigorous quality standards across
the dataset construction process. Rigorous quality control
protocols were implemented throughout the annotation pro-
cess to establish a robust benchmark for evaluating the com-
prehensive capabilities of VLMs. Question formulation
followed a structured protocol that integrates document-
specific content with domain knowledge requirements, es-
tablishing a rigorous framework for in-depth assessment of
scientific paper comprehension. The questions in MMCR
are designed to evaluate comprehensive document under-
standing, specifically focusing on cross-source reasoning
capabilities. The detailed evaluation requirements are illus-
trated in Fig. S.4.

C.4. Annotation process

The annotation process was conducted by expert annotators,
who underwent comprehensive training to ensure annota-
tion consistency and quality standards. The standardized
training protocol comprised several systematic phases: 1)
Initial standardization: The project leader provided an-
notated sample papers to the annotators, which were sub-
ject to multiple rounds of verification. This iterative pro-
cess ensured that the annotators fully understood the ex-
pectations and standards required for the annotation. 2)
Domain-specific allocation: Annotators were assigned to
subject domains aligned with their primary research exper-
tise, selecting one to two domains from predefined cate-
gories. Within each domain, five representative publica-
tions were systematically identified for annotation. This
domain-specific allocation ensures optimal alignment be-
tween expert knowledge and content analysis, maintaining
annotation quality and disciplinary rigor. 3) Quality as-
surance: Completed annotations underwent systematic re-

view by the project coordinator to ensure adherence to es-
tablished protocols. When deviations from annotation stan-
dards were identified, annotators received structured feed-
back and supplementary training for remediation. This it-
erative quality assurance process continued until all an-
notations achieved compliance with predetermined quality
benchmarks. 4)Supplementary annotation: In the final
phase, expert annotators conducted supplementary annota-
tion rounds in accordance with established protocols to ex-
pand the dataset while maintaining consistency standards.



Examples for Annotation Requirements

Requirement I:

“The question is specifically designed to examine
the cross-source reasoning ability of the model in
scientific papers, and it must be correctly derived
exclusively from the designated information source,
not from any additional information source. Anno-
tators must strictly adhere to this requirement.”
Requirement I1:

“In order to mitigate the risk of the model rely-
ing exclusively on prior knowledge to generate re-
sponses, the annotated questions and answers were
meticulously structured to ensure that accurate re-
sponses could only be derived by synthesizing in-
formation distributed across multiple pages of the
document. This approach prevents the model from
bypassing the intended reasoning process and re-
duces the potential for information leakage or un-
intended biases that might arise from relying on ex-
ternal knowledge.”

Requirement I1I:

“To further ensure that the model genuinely com-
prehends the content of each paper, at least eight
questions were annotated for every paper. This
requirement was set to ensure a robust and com-
prehensive evaluation of the model’s understanding
across a variety of aspects within each paper.”

Figure S.4. Annotation requirements



Figure Comprehension

Document Thumbnail

Question: In the comparative illustration of the FastV and VTC-CLS frameworks, what

specific colors are used to represent vision tokens and text tokens, respectively?

vidence:

Large Language Model

FastV.

A. Green and light orange.

B. Light orange and light blue.
C. Green and light blue.

D. Gray and light blue.

E. Light blue and light orange.

Ground Truth: B. Light orange and light

blue.

Figure S.5. The demo of figure comprehension.



Document Thumbnail:
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Figure S.6. The demo of multi-figure comprehension.



Figure-Table Comprehension

Document Thumbnail:
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Question: In the t-SNE visualization of Evidence:
CLIP encoding features for Chart type data, Chanbench

Models

ChartQA

| Regular Type I Extra Type M ne ro | toms
what color represents the dataset that | N e a we
0 o Opensource MLLMs
VisualGLM [20] 3.46 1.83 313 422 4.84 #18 18.96
aChleveS the hlgheSt average Score(75'76) sy 2 g5 235 731 | 750 905 W7 | 164
MLLM 5 h OneChart [10] 1234 226 1033 | 875 337 #6 | 8530
o - InstructBLIP [17] 1796 087 1455 | 550 537 #s | 1592
among Open Source S ln t e Zero ChartVLM [74] . 43.74 15.24 592 1821 #14 42.08
h f . bl ‘.) Internim-XComposer [82] 122 16.01 10.11 579 #13 13.20
CogVLM-Chat [70] 1296 1402 | 1189 13.68 #2 | 3424
shot periormance comparison table” SPHINX 1] 617 1554 | 1792 1274 M| 2144
BLIP2 [38] 0.96 17.53 18.44 4.84 #10 13.52
CogA; 27 26.61 21.63 1436 25.79 #9 54.08
i [12) 243 1840 | 2506 526 w | 1560
ama [26] 1687 2100 | 2256 1832 # | ss40
mPLUG-Owl-bloomz [78] 235 22.73 2547 621 #6 7.84
5 [46] 809 2212 | 2739 1526 #s | 2264
23.57 28.28 26.56  21.05 #4 42.48
V1.5 37.30 35.67 26.86 2947 #3 48.24
Mini-Gemini [40] 2557 3678 | 3181 2579 n | 4432
. Internlm-XComposer-v2 [19] 4096 5452 | 4175 3158 # | 612
A nght green Closed source MLLMs
: : RNIE (5] 4739 2574 4308 | 4639 3337 “n -
4V [54] 5326 3304 4923 | 5583 40.00 153 7850 w2
B' Yellow_ GPT40 [54] 65.00  40.00 60.02 | 63.33 41.05 # ‘ 8570 #1
C. Orange.
D. nght blue. ChartQA ChangA | . . ‘ ChartQA
ChartX ChartX. ChartX
PIOQA PIOIQA w ChartBench
E. Purple..
ChartBench J - 3

Ground Truth: B. Yellow. (a) Chart (b) CSV 7 © Queryr

Figure S.7. The demo of figure-table comprehension.



Figure-Text Comprehension

Document Thumbnail:

performance, respectively?

Evidence:
Prompred Quesion J{_cr )

H
H

(a) Base (b) Fixed CoT (c) Self CoT (d) GPT CoT

CoT Performance. Tab. 7 shows the performance
of the CoT-based baseline, which generally improves
performance without parameter updates. Because
many models encounter difficulties in following
instructions, we show the results on MiniGPT-v2,
Qwen-VL-Chat, and Internlm-XComposer-v2. The
fixed prompt ameliorates all tasks, especially for
weaker models like MiniGPT-v2 and Qwen-VL-Chat.
CoT-self is less effective because the quality and
length of the self-generated CoT are uncontrollable,
which hinders models from following instructions.
CoT-GPT ensures CoT quality and is customized for
each question type and thus performs the best. See
chain of thought examples in Fig. 4.

A. The second one from the left
and the third one from the left.

B. The second one from the left
and the rightmost one.

C. The third one from the left and
the rightmost one.

D. The rightmost one and the third
one from the left.

E. The rightmost one and the
second one from the left.

Ground Truth: D.The
rightmost one and the third one
from the left.

Figure S.8. The demo of figure-text comprehension.



Figure-Formula Comprehension

Document Thumbnail:

Question: Which colored Evidence:
rectangular volume in the

&
InCTRL architecture are utilized —
to compute s_a(x)(i.e. the ey DD
probability of the input x being DB.UQ ﬂﬂﬂﬂ {
classified as abnormal)? - ﬁl
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Image-level !
Multi-layer Patch-level Residual Learning R:s'g:gﬁ_:;fn.ng .‘—’< DD D

e
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A. Green and light orange.
B. Pale blue and light orange.

C. Light orange and yellow. otz i e )
D' Pale blue and green. %TﬁlEmbedding @ Class token Embedding Patch token Embedding # Frozen 4 Learnable

E. Pale red and light purple.

_ exp (Fy f,(x))
Ground Truth: E.Palered sa(x) = - T
and light purple. exp (Fn fv (x)) + exp (Fa fv (x))

Figure S.9. The demo of figure-formula comprehension.



Document Thumbnail:

exhibits the best performance on the GQA benchmark?

A. "Median."
B. "Max."

C. "Min."

D. "None."
E. "Avg."

Ground Truth: C."Min."

Evidence:

Question: Among the various ensemble functions adapted in the VTC-CLS method, which one

Table 5. Different ensemble function £(-) in VTC-CLS.

E() | GQA POPE MMVet SEED Avg
none | 57.9  82.6 31.6 61.8 585
avg 582 84.0 33.4 622 595
max | 582  83.8 31.7 61.8 589
min | 583  83.8 33.0 620 593

Figure S.10. The demo of table comprehension.



Multi-table Comprehension

Document Thumbnail:
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Question: InTable 3, what is the Evidence:

average SCore rank on ChartBenCh for Table 3: The zero-shot performance on ChartQA and our proposed ChartBench. We report average
. Acc+ for 4 yes-or-no tasks and GPT-acc for NQA task. Regular: line, pie, and bar plots. Extra:
the Open-source MLLM Wthh additional chart in Tab. 2. ChartBench is more challenging for more unannotated charts.
[ ChartBench [ ChartQA
demonstrates the lowest NQA score Model T S Vv W W—.
. . [dectNOA™ A [ decr NOA Awe |
among its peers in Table 4? oo
Visual GLM [20] 346 183 33 | 422 484 435 | 368  #I8 | 1896 680 1288  #12
Shikra [13] 859 235 734 | 750 905 781 | 755  #17 | 1624 728 1176  #5
OneChart [10] 1234 226 1033 | 875 337 768 | 912 #6 | 8530 4910 6720 45
InstructBLIP [17] 17.96 0.87 14.55 5.50 537 547 10.43 #15 15.92 792 11.92 #14
ChartVLM [74] 802 4374 1524 | 592 1821 837 | 1206 #14 | 4208 8248 6228 6
Internlm-XComposer [82] 19.70 122 16.01 10.11 579 925 12.94 #13 13.20 7.84 10.52 #16
CogVLM-Chat [70] 1441 1296 1402 | 1189 13.68 1225 | 1326  #12 | 3424 2856 3140 49
SPHINX [41] 17.87 6.17 15.54 17.92 12.74 16.89 16.13 #11 21.44 11.20 16.32 #11
BLIP2 [38] 2165 096 1753 | 1844 484 1574 [ 1670 #10 | 1352 600 976  #17
CogAgent [27] 2039 26.61 21.63 1436 25.79 16.64 19.35 # 54.08 80.56 67.32 #4
MiniGPT-v2 [12] 2237 243 18.40 | 25.06 5.26 2111 19.61 # 15.60 848 12.04 #13
A #1 8 ChartLlama [26] 2202 1687 2100 | 2256 1832 2171 [ 2130  #7 | 5840 9312 7576 1
. . mPLUG-Owl-bloomz [78] 27.80 235 2273 2547 6.21 21.64 | 2221 #6 7.84 488 6.36 #18
LLaVA-vL.5 [46] 2561 809 2212 | 2739 1526 2497 | 2339 5 | 22.64  13.04 1784 #10
B # 1 6 Qwen-VL-Chat [4] 2946 2357 2828 | 26.56 21.05 2546 | 2698 #4 4248 75.20 58.84 #7
. . DocOwl-v1.5 [29] 3527 3730 3567 | 2686 2947 2738 | 3189 3 | 4824 8672 6748  #3
Mini-Gemini [40] 3957 2557 3678 | 3181 2579 3061 | 3396 42 | 4432 57.04 5068 8
C # 1 0 Internlm-XComposer-v2 [19] | 57.89  40.96 5452 | 41.75 3158 3973 | 47.78  #1 6312 8192 7264 #2
* * Closed source MLLMs
ERNIE 5] 4739 2574 4308 | 4639 3337 4382 | 4337 43 - - -
D # 1 2 GPT4V [54] 5326 3304 4923 | 5583 4000 5268 | 5074 2 - -850 @
* * GPTH40 [54] 65.00 40.00 60.02 [ 63.33 41.05 58.89 59.45 #1 - - 85.70 #1

E. #17.

Table 4: The zero-shot performance w.r.t. task types, i.e., Chart Recognition (CR), Value Extraction
(VE), Value Comparison (VC), Global Conception (GC), and Number QA (NQA). 1/ | indicates
that higher/lower is the better, respectively.

Models | R | VE | ve | G I Noatr | aver
| Acct1  CoRl | Acctt CoRl_| Acctl _ CoRl | At CoRL | |
Open source MLLMs
VisualGLM [20] 1629 79.19 000 99.67 99381 000 99.71 319 368
Shikra [13] 210 93.57 11.90 80.71 87.71 786 8271 538 755
OneChart [10] 371 9433 1548 8214 7371 138 8567 276 912
Gro und Trut h . C # 1 0 InstructBLIP [17) 4957 36.67 000 100.00 99.81 000 99.90 290 1043
. . . ChartVLM (74] 0.00 100.00 905 85.48 83.81 852 86.19 3219 12.06
Internim-XComposer [82] 4229 56.95 6386 85.14 96.57 967 7848 329 1294
CogVLM-Chat [70] 2014 6933 281 9429 8071 733 90.14 1329 1326
SPHINX [41] 3848 5138 10.38 80.67 7738 962 80.90 914 16.13
BLIP2 [38] 60.05 37.05 424 89.29 78.86 386 90.00 2m 16.70
MiniGPT-v2 [12] 2905 4924 2200 55.14 5333 1810 6176 371 1935
CogAgent [27] 6257 37.10 119 94.90 8824 119 9476 | 2624 19.61
ChartLlama [26] 49.86 44.19 838 84.14 69.48 10.67 83.81 17.52 21.30
mPLUG-Owl-bloomz [78] 3233 51.24 23.14 76.76 69.29 2648 71.00 4.10 221
LLaVA-vL5 [46] 47.86 3624 1581 6624 5648 1652 6657 1133 2339
Qwen-VL-Chat [4] 5167 27 114 8457 63.14 2171 7486 | 2243 2698
DocOwl-v.5 [29] 3043 6505 3448 5824 5519 3048 6319 | 3376 3189
Mini-Gemini [40] 8052 17.86 17.62 7043 5938 200 7110 | 2567 3396
Internim-XComposer-v2 [19] 68.29 30.24 36.63 57.71 27.71 45.80 51.46 36.71 47.78
Closed source MLLMs
ERNIE [5] 6524 19.52 44.76 44.76 4143 a4 a6 2924 4337
GPT-4V [54] 96.19 28 3095 6333 3476 4619 4762 36.19 5074
GPT-40 [34] 97.62 143 4333 44.76 1619 | 5333 4143 | 4048 | 5945

Figure S.11. The demo of multi-table comprehension.



Text Comprehension

Document Thumbnail:

Evidence: Question: Based on the discussion in the
Despite the inspiring performance, the paper, which of the following accurately
introduction of visual signals for LLMs also represents the limitations of MobileVLM variants?
brings significant computational complexity
and memory consumption due to the large A. Requiring substantial resources for designing
number of visual tokens, increasing the and training.

inference overhead notably. For example, B. Directly removing less important visual tokens
LaVA-1.5 [38] transforms 336x336 based on the attention from the LLM.

and 672x672 images into 576 and 2304 visual  C. Overlooking the relevance between the input
tokens, respectively. Recognizing this, some image and the text to be generated.
previous works explore designing compact D. Discarding crucial visual context that would

connectors. For example, MobileVLM variants benefit the response.

[13, 14] introduce the lightweight downsample E. Demonstrating limited adaptability to diverse
projector to reduce 75% visual tokens. visual input formats and resolutions.

However, such ways necessitate substantial

resources for designing and training, limiting ~ Ground Truth: A. Requiring substantial

its application in practice. resources for designing and training.

Figure S.12. The demo of text comprehension.



Formula Comprehension

Document Thumbnail:
=0

Question: In the inference process, which numbered eq
score is computed for a given test image x_t?

tion describes how the final anomaly

A. Equation (10).

B. Equation (9).
C. Equation (8).
D. Equation (7).
E. Equation (6).

Ground Truth:

Evidence:

the final anomaly score s(z) using Xypqin:

__________-ll

Li=5 > Luls OF

————ﬁﬁ‘{e——————

Thus, the full InCTRL model is optimized by minimiz-
i heoveral loss ap followy:

—_—— ==y
(10)|

Inference. Furirg inEenc; for a gm’,n Test iﬁge_act
and the K -shot normal image prompt set 7 from the tar-
get dataset, they are fed forward through the visual encoder
and the adapter layers, obtaining M, and s;(z¢). The text
prompt sets used during training are used to obtain s, (z¢).
Lastly, we obtain the final anomaly score of z; via Eq. 8.

Limcrrr = Lire + Lh-

C. Equation (8).

= = = o = e Ll |

exp(F] f,(x)) o
exp(FTf: z)) + exp(Fé fu(2))

L _— s e e . el
where []T denoles a lranspose operation, and s, (z) is the
probability of the input z being classified as abnormal.

3.6. Training and Inference

In-Context Residual Learning. During training, InCTRL
performs a holistic residual learning that synthesizes both
patch-level and image-level residual information, aug-
mented by the text prompt-guided features. The holistic
in-context residual ual map of a aquery 1mage zis is defined as:

I
M =M, @s-(a:) ® 8q(),

ol
where s;(z) = n(Fz: © ) is an dnomdly score based on the
image-level residual map F, and @ denotes an element-
wise addition. InCTRL then devises a holistic anomaly
scoring function ¢, parameterized by ®¢, based on M‘; N
and defines the final anomaly score as:

et |

®l

Figure S.13. The demo of formula comprehension.



Pseudocode Comprehension

Document Thumbnail:

B2
Cemee)

Question: How many steps are Evidence:
there in the Dynamic Consistency Algorithm 1: Dynamic Consistency Checking

9 2 9 Input: Camera parameters, Depth maps Dg and {D1};\;1, predefined
ChCCklng algorlthm' thresholds {Hp(n)};'?il and {ﬁd(n)}ﬁil

Output: Mask
1 Initialization: Mask < 0
2 foriin (1,....N) do
3 Err), < zeros(H,W), Erry < zeros(H, W)
4 for p in (0,0) to (H —1,W —1) do
5 & < |lp—Plly, © calculate the reprojetcion error between Dy and D;
6 & 1Do(p) = 'll,/Do(p)
7
8
9

A. 21.
B. 18.

Erry(p) < &,
Erry(p) < &

end
C. 24. 10 for n in (1,...,Ng) do
11 | Mask;, < (Erry, < 0,(n))&(Erry < 0a(n))
D. 16. 12 end

E. 20 13 end

14 for n in (1,...,Ny) do

15 Mask, <0

16 for i in (1,...,N) do

17 | Mask,, < Mask, + Mask;,

18 end

19 Mask, « (Mask, > n)
Ground Truth: A.21. 20 Mask < Mask U Mask,

21 end

Figure S.14. The demo of pseudocode comprehension.



I. Hallucinated Evidence: Case
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Question: What observation can be made from the vision-
language few-shot Adapters comparison across the five
datasets presented?

A. Vision-language adapters consistently outperform both
basic linear probing and zero-shot classification across all
five datasets.

B. Vision-language adapters outperform basic linear probing

in some, but not all, of the five datasets, while consistently
improving upon zero-shot classification.

C. Vision-language adapters do not demonstrate consistent
improvements over either zero-shot classification or basic
linear probing across the datasets.

D. Vision-language adapters show inconsistent
improvements over zero-shot classification, but generally
outperform basic linear probing across the datasets.

E. Vision-language adapters show consistent improvements
over zero-shot classification, but only marginally outperform
basic linear probing across the datasets.

Ground Truth:C.

Cilpadapter

TipAdapter

Fig. 5: Visi hot Adapters. The

TipAdaptert  k ZSec - LP(80%Data)

corR0G

Adapters in the few-sho sefting icp: i 3 4
d

5 cross-validation folds. ZS: zero-shot (i.. promp!

o e ey

5.2.2. Vision-language Adapters
Recent emergent literature in computer vision has investi-
gated strategies, often referred to as Adapters, to fine-tune

vision-language models in low-data (few-shot) regimes for the I

target tasks, e.g.. Clip-Adapter (Gao et al.. 2023) and Tip-
Adapter (Zhang et al.. 2022a). These strategies typically in-
tegrate the knowledge driven from the pre-trained language en-
coder along with the vision features and use additional layers
in the networks. Still. the utility of these adapters remains
largely unexplored in the medical domain. Figure 5 depicts
the results obtained by different vision-language Adapters using

lge prompt
m 6p()+norm [ 6p()  wem 6f)

o 10shots 0% Dataset

-l

Fig 6 Study of the transferred features for adaptation. Evaluation of the

our pre-trained FLAIR foundation model and expert-knowl
prompts, across the different tasks. The results point to the

of the linear-probe transferability of the features extracted from

| the vision encoder, (-} the inter-modaliy projecton head, 0(-), and it hy-

persphere normalization, 9+ + norm. The metric presented is the average

powerful capabilities of zero-shot classification in different sce- | accuracy, averaged across 5 cross.validation folds. The results are presented

narios. In most of the cases, zero-shot inference, enhanced | forthe low-data( 1

with domain-expert knowledge prompts, outperforms adapta-
tion using £ =< 5 shots (see Figure 5 MESSIDOR. FIVES,

In this section, we present ablation experiments that motivate
different decisions in the design of the proposed framework.

What features to use for knowledge transfer. Vision-language
pre-training models align the image-encoder features. 8 7(+). to
the text representations via a projection, 9(-), along with a
‘mapping to the unit hyper-sphere using an 12 izati
Regarding the transferability of the pre-trained visual features
to downstream domains and tasks via linear probing (LP), the
standard feature-representation choice in prior literature is of-
ten based on both projection and normalization (Radford et al..
2021: Gao et al.. 2023: Zhang et al.. 2022a). In the follow-
ing ablation expe nt, we evaluate the feature transferability
for the different evaluation datasets using the following three
options: vision, projected, and projected-and-normalized fea-
tures. We evaluated the three options under both the low and
large-data regimes, using k¥ = 10 and 80% of the dataset for
training.

Figure 6 depicts the results, which show performance im-
provements across most of the tasks when using visual rep-
resentation O 7(-) for transferability, in comparison to using
projected features 94+) or projected-and-normalized features
94+) + norm. Motivated by these observations, we selected

E. 2053). As for the vision-language Adapters (Zhang | o ioiot feanure

Gao et al.. 2023). these do not seem to provide |
vements, er over zero-s| \mcasslicanon 1

-data (80% of the whole dataset) regimes
9 7(-) for the ility ex-
periments in this work.
ization of linear-prob under domain
shifts. The p in-and-adapt strategy using image-1
models and i efficient li -prob
has shown promising per on

P
vision tasks. In the following, we aim at conducting a more
hensi luation of this linear-probe strategy. in order
to assess the capacity of the adaption stage in response to new
changes in a target domain (i.e.. there are domain shifts after
adaptation). To do so, we employ the supplementary evalua-
tion subsets: see Table S1. In particular, we evaluate the per-
formance of the linear probe, which has been fine-tuned on a
source domain, in a novel target domain. More concretely, the
adaptation is performed as follows using two datasets A and B:
The model is fine-tuned on A and tested on B, and vice-versa.
Again, two feature representations are evaluated for transfer-
ability: features extracted from the vision encoder, 97(-), and
features based on the inter-modality projection head. 9(). We
juxtapose the performance of the linear probe to fine-tuning all
the model trainable parameters on the source data (i.e., using
a standard supervised-learning setting, but with parameter ini-
tialization using either FLAIR or Imagenet model). as well as
to the zero-shot performance. The experiments are carried out
in the large-data regime, to evaluate the best-case scenario, in
which the available data is not a limiting factor.
Figure 7 depicts the results from these experiments. which
point to the following takeaways: The Fine-tuned, dataset-

Response: The correct answer is: B. Vision-language adapters outperform basic linear probing in some, but not all, of the
five datasets, while consistently improving upon zero-shot classification. Y
This observation aligns with the detailed analysis of the results presented in the study, where vision-language adapters
provide benefits over zero-shot classification across the datasets but do not always show better performance than basic

linear probing in every dataset.

Error Type: Hallucinated Evidence

Analysis: The model fabricates unsupported conclusions without proper evidence from the source materials. The model
incorrectly synthesizes performance claims about vision-language adapters that directly contradict the actual evidence
presented in both the text and figures. The source materials explicitly state that vision-language adapters show no consistent
improvements over either zero-shot classification (k<5) or basic Linear Probing (k=10). Instead of accurately interpreting
the available data, the model generated fictional performance patterns, demonstrating a clear case of evidence

hallucination.

Figure S.15. Ilustration of a Hallucinated Evidence Error Case. The figure demonstrates how the model fabricates unsupported conclusions
about vision-language adapter performance, contradicting the evidence highlighted in green from the source materials.




I1. Incomplete Evidence: Case 1
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Table 11: Hyperparameters for visual language pre-training on interleaved text and image data.

Question: What observation can be made from the vision-
language few-shot Adapters comparison across the five
datasets presented?

A. 2; 36 hours..

B. 3; 40 hours.

C. 2;40 hours.

D. 3; 36 hours.

E. 3; 45 hours
Ground Truth: C.

Response: The correct answer is: A. 2; 36 hours. X

Error Type: Incomplete Evidence

Analysis: The model's response demonstrates selective
attention to the available evidence. While accurately
identifying the two-stage nature of the visual pre-training
process from the text "The visual pre-training process
involves two stages," in the paper, it only captured partial
evidence information for the second question.
Specifically, the model focused on "the second stage took
around 36 hours" while overlooking the crucial detail
that "the first stage took approximately 4 hours." A
complete consideration of both time components would
yield a total of 40 hours (4 + 36), making C the correct
answer. This partial evidence consideration led to an
inaccurate conclusion.

Hyperparameter Values
Basemodel = o 1= S s s
vision encoder https://hu i £: openai/clip-vit-large-patchl4-336
projector 2ayer MLP
Stage 1. Prejector Initialization
epochs. 1
global batch size 256
learning rate 0.001
learning rate scheduler cosine
weight decay 00
Warmup ratio 0.03
4096

tune LLM X
tune vision encoder
tune projector
Stage 2: Visual Language Pre-raming

ochs 1
global batch size 128
leaming rate 0.00005
learning rate scheduler cosine
weight decay 00
warmup ratio 0.03
max length 096
tune LLM
tune vision encoder X
tune projector

e mmmmmmmmmmmmm Y e

1 Training Stages The visual pre-training process (Lin et al.. 2023) involves two stages:
1

1. Projection initialization: In this stage, the LLM and the visual encoder are both pre-trained
and remain fixed. The projector, however, is randomly initialized. Only the projector is
fine-tuned during this stage, using image-caption pairs from (Liu et al.. 2024).

2. Visual language pre-training: During this stage. both the LLM and the projector are
fine-tuned on the interleaved image and text data. This includes data from general domains
provided by MMC4 (Zhu et al.. 2024). as well as scientific articles and figures from our
dataset MMSci. Previous research (Lin et al.. 2023) has shown that tuning both the LLM
and the projector yields better results than tuning only one of them. Throughout this stage,
the visual encoder remains fixed.

| We did not conduct the further visual instruction-tuning for this model., as our primary objective was
J to infuse scientific knowledge into the LLM for the consecutive text-only material generation task.
1 The two stages were conducted on a computing cluster equipped with eight NVIDIA A100 GPUs,
each with 40GB of memory. The first stage took approximately 4 hours, and the second stage took

b around 36 hours.

A.3.5 MATERIALS GENERATION

As a case study to investigate whether scientific knowledge has been effectively infused into the
LLM (LLaMA2-7B in our experiments) and whether it can enhance performance on material science-
related tasks, we follow the methodology from Gruver et al. (2024) to explore the material generation
task. The primary objective is to format material crystal structures into text strings and fine-tuning
the LLM to generate stable materials.

Prompt design We adhere to the prompt design described in (Gruver et al., 2024). There are two
types of prompts in the training data: the generation prompt with one or multiple conditions and
infilling prompts, where partial crystal structure strings are masked and the model generates the
masked parts. The specific prompt templates are shown below., adapted from (Gruver etal.. 2024).

29

Figure S.16. Illustration of an Incomplete Evidence Error Case. The model correctly identifies the two-stage nature of visual pre-training
but overlooks crucial timing information, considering only the second stage duration (36 hours) while missing the first stage duration (4
hours).



I11. Perceptual Error: Case 1

Question: Referring to the color scheme in Figure 3's
legend, what are the respective Sentiment-Amazon scores in
Table 1 for the methods represented by blue, green and pink?

A. 80.2,83.7,93.2.
B. 94.6, 88.0, 96.5.
C. 61.8,66.0, 71.3.
D. 88.0,94.6,96.5.
E. 96.5,94.6, 88.0.
Ground Truth:D.

Response: To answer this question, we align the methods
represented by their respective colors in Figure 3's legend
with the Sentiment-Amazon scores in Table 1. From Figure
3:

- Blue: Standard method

- Green: kNN method

- Pink: ICLM method

From Table 1 (Sentiment-Amazon column):

- Standard method = 94.6

- kNN method = 88.0

- ICLM method = 96.5

Thus, the respective scores for blue, green, and pink are
*%04.6, 88.0, and 96.5%*.

The correct answer is: B. 94.6, 88.0, 96.5. ¢

Error Type: Perceptual Error

imblisl_\ed as a conference paper at ICLR 2024
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|Fig\1re 3: Language modeling perplexity (the lower the better) on Wikipedia, Arxiv. and Books|
I(§3.3.1). ICLM outperforms the baselines consistently across all model sizes.
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Icoutext examples for all datasets. |CLM outperforms baselines on all datasets. 1

1

1 Method Sentiment Hate Speech Topic Classification A 1
letho verage

: Amazon _ SST2 Yelp Hate Offensive Agnews Dbpedia 1

1 Standard 94.6 837 743 52.7 55.7 68.3 61.5 66.0 :
1 RN 88.0 80.2 65.1 50.1 53.1 65.7 56.4 61.8

1 ICLM 96.5 | 932 774 60.6 57.3 76.0 63.2 71.3 :

i I
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classificaiton (AGN (Zhang et al.. 2015b) and Dbepdia (Lehmann et al.. 2015)) and hate speech
detection (Barbieri et al.. 2020). We use label words from Min et al. (2022) and report accuracy as
the metric.

Results. As shown in Table 1. ICLM consistently demonstrates better performance across all text
classification datasets. leading to 8% gain on average. This result suggests that ICLM is better at
learning from demonstration examples. We later analyze the relationship between the number of
demonstration examples and the performance of the in-context learning in §4.3.

3. READING COMPREHENSION

Datasets & Metrics. Reading comprehension requires to answer the question based on the given
paragraph. We consider the RACE reading comprehension benchmark (RACE-High and RACE-
Middle) (Lai et al.. 2017). SQuUAD (Rajpurkar et al.. 2016). BoolQ (Clark et al.. 2019). DROP (Dua
etal.. 2019). and HotpotQA (Yang et al.. 2018). We use 2-shot in-context learning for evaluation;
we did not use more because some documents in reading comprehension tasks are very long. We
report the exact match score for HotpotQA and SQuAD, and accuracy for other datasets that are
multi-choice tasks (RACE. BoolQ, DROP), following the standard in prior work.

Results. Table 2 highlights that ICLM consistently surpasses both the standard and /NN baselines
across all datasets with an average improvement of 14%. In particular, we observe significant gains on
HotpotQA, which requires multi-hop understanding of multiple related documents. The performance
gain on reading comprehension tasks demonstrates that IN-CONTEXT PRETRAINING improves LMs’
ability of undestanding and reasoning over the given context.

4. RETRIEVAL-AUGMENTATION

Datasets & Metrics. Retrieval-augmentation is a method to retrieve a set of passages from the
external text corpus (e.g.. Wikipedia) and prepend it to the input query in order to better handle input
queries that require factual knowledge (Lin et al.. 2023: Xu et al.. 2023: Su et al., 2023). We conduct
evaluation on two well-studied open-domain QA datasets: Natural Questions (NQ) (Kwiatkowski

et al., 2019) and TriviaQA (Joshi et al.. 2017). For both datasets, we report exact match scores (l])iM
and evaluate the model performance in both closed-book and open-book settings. In the closed-boo

Analysis: This response demonstrates a critical perceptual error in color-method association. While the model correctly
identified the numerical scores from Table 1 for each method, it incorrectly mapped the colors to their corresponding
methods in Figure 3's legend. Specifically, it reversed the color assignments for the Standard method (actually
shown in green, not blue) and the KNN method (actually shown in blue, not green). This error highlights a
fundamental limitation of current LVLMs in visual-textual alignment tasks, particularly in color-coding interpretation.

Figure S.17. Illustration of a Perceptual Error Case. The figure demonstrates how the model correctly identifies numerical scores but
incorrectly maps color codes to methods, mismatching the blue and green representations in the legend despite clear visual evidence.



IV. Extractor Error: Case 1
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Response: The accuracy score under the 'All' setting for
the MLLM that occupies the middle position in the CoT
reasoning comparison in Figure 1 is:

C.353. X

Analysis: The model's interpretation of Table 3 reveals a
critical confusion between different metric columns. While
correctly identifying the target model using spatial
information from Figure 1, the model incorrectly extracted
the CoT evaluation score (35.3) instead of the required
accuracy score (23.5) under the 'All' setting. This error
demonstrates the model's inability to distinguish between
different evaluation metrics and accurately align the
Error Type: Extractor Error requested information from tabular data.

This corresponds to Gemini-Pro as reported in Table 3.

Figure S.18. Illustration of an Extractor Error Case. The figure demonstrates how the model confuses different metric columns in Table 3,
extracting the CoT evaluation score (35.3) instead of the correct accuracy score (23.5) despite accurately identifying the target model from
spatial information.



V. Reasoning Error: Case 1

Question: Which model has an input approach different
from the model proposed in this paper in the multi-page
document comprehension setting?

A. GRAM,

B. DocFormerv2.
C. PDF-WuKong.
D. Idefics3-8B.

E. GPT-4(v).
Ground Truth:D.

Response: The correct answer is: E. GPT-4(v). X
Reason: GPT-4(v) employs a vision-language model
approach, which is inherently different in its input approach
compared to PDF-WuKong's end-to-end sparse sampling
framework for interleaved text and images in long multi-
page document comprehension.

Error Type: Reasoning Error

increases. the performance

dal inputs

Table 4. Description of the iy format used in the i i de

1 ip p of the
1 of our model remains stable, unlike other models that ex-
| _Symbol Description 1 perience significant declines. At a context length of 64K.
1 * Input the parsed content of the pdf file. || P]ZEF-WuK‘_)ng acln_eve‘s the best results, demonstrating its
1T Input the OCR content only. 1 in handling
7 Input the entire page image.

1 7 pu fire page mag I Table 6. Performance comparison with other DocVLMs on single-
1 z Input the entire page image and OCR content. 1 page d t-oriented VQA

| J S ————
Table 5. Performance comparison with other DocVLMs for PDF

i ing on Single-Evidence Subset of Paper-
PDF. () indicates the use of a special input approach. For details,
refer to Table 4.

#param ANLS F1 ROUGE

Qw 96B 264 196 183
Monkey 9.8B 300 244 223
mPLUG-OWIR6]" 82B 195 203 227
Emu2-Chat[55] 37B 260 244 234
MiniCPM-2.5 [56]" 85B 318 282 248
IXC2-VL [45] 234 208 213
IXC2-4KHD [25]" SB 200 180
CogVLM2 [57]" 1B 2 263

PDF-WuKong (ours)” 8.5B

352 \\

q——--——-_--————-————

page document datasets. As shown in Tab. 6, our model
achieved leading performance compared to other open-
source models.

(7) indicates the use
ofa special input approach. For details, refer to Table 4.

| Model Doc. Chart. Info.
Gemini Pro [60] 881 741 752
Closed| Gor 4y [61] 884 785 751
Qwen-VL [53]" 65.1 657 354
Monkey [54] 66.5 651 36.1
Text-Monkey [10]"  73.0 669 286
DocOwl 1L5[62]" 822 702 507
Open | MiniCPM-V-2.5[56]" 848 - -
Vary-base [12]" 763 66.1
DeepSeek-vl-7b [63]" 710 - -
IXC2-VL [45]" 726 577 344
IXC24KHDI6[25]" 849 801 608
PDF-WuKong (ours)’ 85.1 80.0 61.3

1 Table 7. Performance comparison with other DocVLMs for multi-
I page document understanding. () indicates the use of a special
| input approach. For details. refer to Table 4.

This demonstrates that PDF-WuKong 1

can e_ffecm‘ely handle various types of s z:ng 1 Model MP-DocVQA DUDE
questions, g its y in
visual question answering tasks. 1 Longformer [64]7 551 271

In addition, we assessed the performance of traditional 1 BigBird [65]" 585 26.3
specialized models and large-scale models on two existing I LayoutLMv3 [66]" 55.1 203
multi-page document QA datasets. The experimental re- |l Hi-VTS [44]" 61.8 357
sults, presented in Tab. 7. indicate that our model’s per- | DocFormerv2 [67]* 76.4 48.4
formance in multi-page document scenarios is compara- | GRAM [16]* 83.0 534
ble to these specialized models and far surpasses the latest 1 GPTA4(v) [61]F - 539
document large model. DocOwI2 [26]. Notably. on com- 1 Idefics3-8B [68]" 672 387
plex multi-page document datasets like DUDE [58]. PDF- 1 DocOwl2 [26] 69.4 46.7
‘WuKong outperforms GPT-4V [59]. This improvement is +
attributed to our sparse sampler, which effectively filters out 1 PDF-WuKong (ours) 76.9 56.1
useful i ion from multi-page d enabling 1

the model to focus on relevant content.

Furthermore, we conducted zero-shot evaluations on a
new long multimodal document understanding benchmark
MM-NIAH [18]. As shown in Tab. 8, our model uses
the fewest parameters yet achieves the second-best per-
formance. Although InternVL-V1-5-RAG [18] surpasses
PDF-WuKong by 2.8%. it utilizes 36.5 billion more pa-
rameters than our model. Moreover. as the context length

5.4. Ablation Study

To comprehensively evaluate the effectiveness of our pro-
posed model components, we conducted ablation studies
focusing on datasets. the impact of the sparse sampler, sam-
pling strategies, and document length. Below. we present
the findings from each of these experiments.

Analysis: The superscripts of each model in Table7 show the input approach of the model proposed and the models in
the options in the multi-page document comprehension setting. Analyzed together with the explanation of input approach
in Table4, the input approach of option “D” is Input the entire page image, while the input approach of PDF-Wukong and
the rest of the options is Input the entire page image and OCR content. The input approach of option “D” is Input the
entire page image, while the input approach of PDF-Wukong and the rest of the options is Input the entire page image and
OCR content. The model fails to correctly combine the context and diagrams in the text to comprehend the problem, and

make the correct reasoning with the options.

Figure S.19. Illustration of a Reasoning Error Case. The figure demonstrates how the model fails to correctly interpret input approach
differences between models despite clear evidence from Table 1 and Table 7, misidentifying GPT-4(v) as having a distinct approach from

other models.




VI. Irrelevant Answer: Case 1

Question: What is the number of datasets that pass the
refinement filter as a percentage of the total number of
datasets collected?

A. 28.17%.
B. 16.25%.
C. 20.51%.
D. 18.54%.
E. 13.77%.
Ground Truth: D.

Response: To calculate the percent of the number of
datasets that pass the refinement filter as a percentage of
the total number of datasets collected:

The total number of datasets collected = 75,506 ?
The number of datasets filtered = 54,557 °
Calculated, 54,557 divided by 75,506 equals 72.26%
Approximately 72.26 of the total data remained after
refinement. Hence, when checking the options, none of
them give the correct answer as listed values do not match
refine computation exactly.

Error Type: Irrelevant Answer

Analysis: The model is required to answer the
number of datasets that pass the refinement filter as a
percentage of the total number of datasets collected.
But the model finds irrelevant information, the
number of papers that pass the data processing
pipeline as a percentage of the percentage of the total
number of articles collected initially, and did not
calculate the number of required high-quality image-
text pairs (37,607) as a percentage of the total image-
text pairs (202,760). Misunderstood the meaning of
dataset and found irrelevant information.

Abstract

Scientific Literature charts often contain complex visual ele-
‘ments, including multi-plot figures, flowcharts, structural di-
agrams and etc. Evaluating multimodal models using these
authentic and intricate charts provides a more accurate as-
sessment of their understanding abilities. However, existing
benchmarks face limitations: a namrow range of chart types.
overly simplistic template-based questions and visual ele-
ments. and inadequate evaluation methiods. These shortconi-
g5 lead to inflated performance scores that fail to hold up

2024

s these challenges. we introduce a new benchmark, Sci-
Chart QA (SCI-CQA). which emphasizes flowcharts

fltering, we refined this to 37.607 high-quality
utextual information. SCI-CQA also introduces
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these improved results
at large models have

challenging but essential types like flowcharts. For exam-
ple. some studies rely on synthetic data to generate charts
(Kafle et al. 2018; Kahou et al. 2018), or use web-sourced
raw data with automated programs to create charts (Methani

ond, the template-based questions and overly simplis-
visual elements allows models to bypass the ac-
input, either by directly answering questions or
correct answers based on hallucinations. For
1reQA (Kahou et al. 2018) uses 15 templates

cthods tend to be either only including
bjective questions, with insufficient
differentiation between\ypes of evaluation. This lack pre-
vents a precise assessmei| of the models” specific strengths
and weaknesses. For instaige, (Xu et al. 2023) uses ACC+
for objective evaluation, whidg (Han et al. 2023; Wang et al
2024 ltaon GPT4 scoml en-ended assessment.
et

subjective questions

1 G ensure a mofe |homuzh an eqmlame “ssessment of 1
models’ chart understanding abilities. we have created the

I SCI-CQA benchmark, drawing from scientific literature. By

| utilizing the wealth of charts available in scientific papers,

] SCI-CQA addresses the issues identified in previous bench-
marks. We collected 202,760 image-text pairs with context

I and captions from papers presented at 15 top-tier computer

] science conferences. Through a rigorous three-stage filter-

| ine process, we refined ihis dataset to 37.607 high-quality
image-text pairs. These pairs offer a diverse range of chart

I types and styles. rich in visual elements, varied in distribu-

] tion. and include multiple sub-charts (see Right of Fig. 1).

1

1

1

1

1

1

1

1

Notably. we are the first to collect and annotate scientific
flowcharts and evaluate them as a distinct category.

To avoid inaccurate performance evaluations due to
template-based questions, we drew inspiration from (Wang
et al. 2024) and proposed six types of base questions to
broaden the scope of answers. By incorporating charts and
textual context inputs, we generated questions that cannot
be answered solely from the images. We then used GPT-
40 to produce the comresponding question-answer pairs. The
question-answer pairs were then manually curated to form
a high-quality validation set. As shown in Fig.1, struc-

o -

Charts.

-
o

Fiter

Context and Caption

Refined Context |./*
and Caplion

by rig atkey stages. wi

chart context to propose questions that cannot be answered
by the chart alone. This approach ensures that when mod-
els encounter reasoning questions that cannot be solved with
visual input alone they must aclumwledve their inability to
answer, thus issues. As ills

in Fig.1, SCI-CQA’s questions are more challenging, posing
difficulties even for state-of-the-art proprietary models.

Regarding evaluation methods, (Xu et al. 2023) utilizes an
objective ACC+ mode, providing more standardized results.
In contrast, (Wang et al. 2024) and (Liu et al. 2023a) employ
a free-form question-answering mode. which assesses the
model’s overall capability in a more flexible manner. SCI-
CQA integrates both approaches and adopts a human exam-
inspired framework. It categorizes questions into multiple-
choice, true/false, and open-ended formats, offering a more
comprehensive evaluation of a model’s abilities.

Some works (Li et al. 2024a: Li and Tajbakhsh 2023:
Ahmed et al. 2023) have made contributions by address-
ing the need for datasets in the field of scientific literature
chart understanding. However, the absence of manual review
limits the accuracy of model performance assessments. Our
review reveals that only about 47% of the QA pairs gener-
ated by GPT-40 were correct. Furthermore, the datasets they
used lack contextual information, which hinders the model’s
ability to handle more complex tasks. On the other hand,
(Zhang et al. 2024) and (Singh et al. 2024) have recognized
flowcharts as a distinct chart modality. However, the syn-
thetic flowcharts in their studies differ in complexity and di-
versity from those in SCI-CQA.

SCI-CQA

Data processing pipeline

[1].Data source. The dataset sources include 15 top-tier
conferences (shown in Fig.8) covering computer vision. nat-
ural language processing. machine leaming, multimedia in-
formation and emerging inter y fields.
To ensure high data quality, SCI-CQA leverages the exper-
tise of graduate students and PhD candidates in computer
science for meticulous data filtering and question-answer re-
views. We obtained LaTeX source files from these confer-

Figure 2: SCI- CQA data pmcessmg plpelme multiple propridary models is employed to monitor and enhance data quality,

hs led to the creation ofa high-quality evaluation dataset.

- —— -
ences over the past decade totaling 75,506 articles. After
filtering, we retained 54.557 papers. excluding those mthl
su.t‘ﬁcnmtchan data.

——— ——
[2].Raw chart context{apllon pahs me‘l‘;e pelspecme
of scientific literature comprehension, interpreting charts in-
volves more than understanding visual elements. it requires
addressing complex reasoning tasks by integrating informa-
tion from both the chart and its contextual surroundings. Un-
like previous work. our data collection method uses a triplet
representation: (chart, caption, context).

Charts are classified using the proprietary Gemini model

(Team et al. 2023), which dls!mgulsl.\es between data charts,
flowcharts, and visualization analysis charts. We exclude the
visualization analysis chart(different tasks can vary greatly
and are difficult to assess uniformly) and manually re-
view the data charts and flowcharts. The “caption™ consists
of the textual description of the chart, extracted from the
caption tags in LaTeX source files. The “context” in-
cludes relevant surrounding text, cited via ref. Given that
the extracted text often contains special symbols and LaTeX
commands, we refined the text descriptions using techniques
from (Sun et al. 2021) to ensure high-quality textual data.
[3] High-quality QA pairs. As illustrated in the left half
of the figure, the number of flowcharts and data charts in
SCI-CQA is nearly balanced. SCI-CQA is the first to com-
pile and evaluate a comprehensive multimodal QA dataset
for natural flowcharts, which encompass widely used sci-
entific illustrations such as model structure diagrams, algo-
rithm flowcharts, and model training pipelines. Additionally.
SCI-CQA features 11 common types of data charts, includ-
ing line charts. scatter plots. and pie charts. SCI-CQA also
includes charts with multiple subplots. combinations of im-
ages and data visualizations. and hybrid charts that integrate
two or more visualization types. Notably, it features special-
ized charts such as forest plots. correlation matrix charts,
Gantt charts. violin plots. density plots. and Pareto charts.
which are often overlooked in previous work but are crucial
in scientific literature.

Regarding QA types. the dataset is divided into perception
and reasoning tasks. While perception tasks have received

Figure S.20. Illustration of an Irrelevant Answer Case. The figure demonstrates how the model misinterprets the question target, calcu-
lating the percentage of papers passing the pipeline (54,557/75,506) instead of the required percentage of high-quality image-text pairs
(37,607/202,760), revealing a fundamental misunderstanding of the dataset definition



VII. Matching Error: Case 1

Question: According to the paper, which of the following
statements about the text description defined before section
'3.1" is True?

A. The text descriptions are designed to provide a one-to-
one correspondence between each categorical label and a
unique textual representation.

B. A single categorical label may correspond to several text

descriptions, each describing a different feature of the image.

C. Asingle text description may correspond to multiple
categorical labels, as various diseases can exhibit similar
symptoms..

D. The text descriptions are generated by a Large Language
Model that has been fine-tuned on extensive medical
imaging data..

E. The text descriptions are annotated by a several invited
expert radiologists to ensure accurate representations.
Ground Truth: B.

Response: The correct answer is:
describing a different feature of the image. »{ "¢

4

2023). or attribute descriptions (Menon and Vondrick. 2023) for
prompt-based inference, using pre-trained question-answering
models to describe the shape and color of the target condi-
tions (Qin et al.. 2023). Other works have focused on the pre-
training stage, generating domain-specialized VLP models such
as ConVirt (Zhang et al.. 2022b). PubMedCLIP (Eslami et al.
202 LorlA (Huang et al.. 2021b). MedCLIP (Wang et al.
2022¢) or IP (Wu et al.. 2023). among others (Wind-

dqng et al.. 2022a; Miiller et al. Chen
e main challenges of such pre-training

and RadGraph to augment the available t
2022b; Wuet al., 2023),

language pre-training strategies in medical in
of categorically-labeled datasets has been overls

encoding expert’s domain knowledge into text supervisign.

2.4. Expert knowledge-driven models of fundus images

The idea of integrating domain knowledge into deep learning
for medical image analysis is not new, and has triggered interest
in the recent literature (Xie et al., 2021). In particular, domain-
specific. expert knowledge (EK) from clinicians could be re-
trieved to highlight areas of interest, relevant features, anatomi-
cal priors, or inter-di: ies and hi hies. In ret
nal imaging, the expert’s knowledge has been integrated in var-
ious ways. For instance, Giancardo et al. (2012) first segmented
the exudates, which served as a proxy for macular edema detec-
tion. Similarly, several other strategies train attention modules
to enhance local lesions. which act as surrogates for disease
classification. Closely related to our work, we have identified
several categories, which include: using pixel-level annotated
lesions for AMD staging (Fang et al., 2019), weakly-supervised
strategies based on the relationships between diabetic retinopa-
thy and diabetic macular edema (Xiaomeng et al.. 2020). or dis-
entangling disease-specific saliency maps for diabetic retinopa-
thy grading (Sun et al., 2021). In addition, expert knowledge
for glaucoma detection in fundus images is usually integrated
by cropping the optic-disk area as an initial step before classi-
fication (Diaz-Pinto et al., 2019; de Vente et al., 2024). Unlike
this existing literature, we study the use of well-established ex-
pert knowledge on retinal image analysis via vision-language
pre-training, which has been largely overlooked in the context

3. Methodology

Fig. 3 depicts an overview of our framework. We introduce
each methodological component formally in the following.

Problem setup. Let us define an assembly dataset, Dz, which
contains N samples gathered from different publicly available
fundus image datasets, including heterogeneous sources and
findings. For each sample, we build a multi-modal triplet in-
cluding an image, a gorical label and a text ipti
Dr = {(X,», T, . X, €R® denotes a fundus 2D im-
age. with Qy its spatial domain, y,, €{1, ..., C} is a label among
the C unique categories in the assembly dataset, and T, €T
is a text description associated with the label. Figure 2 pro-
vides a few examples of categorical labels, such as DME. and
the associated text descriptions encoding domain knowledge,
e.g.. “hard exudates involving the center of the macula”. Such
textual domain knowledge could be derived from the relevant
clinical literature (Garner and Ashton. 1979) and/or from com-
munity standards (Wilkinson et al., 2003). Table $4 provides a
ive list of the between the categor-
ical labels and textual domain-knowledge descriptions, which
we compiled from the relevant clinical literature, to build our
foundation model of the retina. Note that a single categorical
label may correspond to several text descriptions, each describ-
ing a different finding or feature in the image. The objective of
our vision-language pre-training is to provide a powerful multi-
modal model capable of learning a feature representation space
vhere samples are aligned across the three modalities: images,
sicsorics md e,

.1. Aligning images, labels and domain-knowledge text
Our multi-modal pre-training integrates vision and language [l
encoders. Let 9= {8 7(-) 94-)} denotes the vision encoder, with
97(+)a feature extractor and 94+)a projection head. The feature
extractor 07(+) yields a feature representation W € R+ : i =
97(X;) of an input image Xy, with Dy the dimension of the vi- 1
I sual feature space. Analogously, let ¢ = {gr(-) @)} denotes ||
| the text encoder. ¢(-) being a feature extractor and @) a pro-
ction head. The feature extractor ¢#(+) provides an embedding 1
ERP: v, = ¢y(T ;) of an input text T ;, with Dy denoting the
dimension of the space of text features. Each of the projection
1 heads, 94+) and ¢(+). maps the independent modality repre- 1
sentations into a joint unit hyper-sphere space: u = —t’,jé,'%l and 1l
= _‘T&\% In this normalized space. the similarity between 1
image X; and text description T ; is evaluated by the cosine sim-
A e I denotes the transpose opera
“The o{)ﬁ/ct con??s?oneaﬁiﬁfe-ajr)\u-'e Tepresentations that .
minimize the distances between paired image and text descrip-
tions while maximizing the distances between unpaired sam-
ples. We build image-text pairs from the available categorical

of foundation models. Concretely. we propose a

I P ining, which i relevant features,
hierarchies, and relationships between the classes as well as
information on the regions of interest characterizing the target
diseases, in the form of descriptive textual prompts, paired with
the corresponding images.

label i thereby samples belonging to
the same category to have close feature representations, in both
the image and text domains. More formally, let B denote a batch
containing a set of images {X}ex, and a set of text descriptions
{T,}se1s. where X3 C{1,..., N}denotes the set of indices of the

images in B, and Tz C{1,..., N} the set of indices of the text

B. A single categorical label may correspond to several text descriptions, each

Explanation: According to the text, the authors define text descriptions that encode domain knowledge for each disease. A
single categorical label can correspond to multiple text descriptions, as these descriptions aim to capture various features,

hierarchies, and dependencies of the related pathology.

Error Type: Matching Error

Analysis: The model correctly made choice “B”, but due to a matching error in the Rule-based methods, the correct
choice was not successfully extracted from the model's answer, resulting in a matching error.

Figure S.21. Illustration of a Matching Error Case.
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