AnyCalib:
On-Manifold Learning for Model-Agnostic Single-View Camera Calibration

Supplementary Material

A. Ablations

We report ablation results in Tab. 5. Experiments 1-4. are
conducted by training AnyCalib on OP;, and averaging er-
rors across the benchmarks of Sec. 4.1. The fifth, RANSAC,
ablation, is performed on ScanNet++, following Sec. 4.2.
MAC:s are computed for a 280 x 364 input image, which re-
sults from resizing an image with a 3:4 (H:W) aspect ratio
to the training resolution of 3202 pixels.

1-2. Intermediate representation. We test the perfor-
mance of AnyCalib when learning rays instead of our pro-
posed FoV fields (Sec. 3.1). As first baseline, we use the
target representation (rays) and loss function of WildCam
[100], which is a cosine similarity loss. As a stronger base-
line, we evaluate also the training strategy of DSINE [8] for
learning rays i.e. using an angular loss. Compared to these
baselines, FoV fields lead to more accurate calibrations.

3. Decoder architecture. Our proposed light DPT de-
coder, when compared to the original [67], decreases ~20%
the computation and leads to slight accuracy improvements.

4. Dataset extension. Our extended version of OpenPano
[86] leads to improved accuracy. This experiment shows
that AnyCalib is scalable.

5. RANSAC [25] can also be applied to our derivations
in Sec. 3.2 by using minimal samples from the set of 2D-
3D correspondences between the regressed rays and image
points. However, minimal samples lead to inaccurate in-
trinsics when fitting high-complexity camera models such
as Kannala-Brandt (KB) [39]. This motivates our non-
minimal estimation of the intrinsics.

In conclusion, FoV fields are an appropriate intermedi-
ate representation for calibration and key to the performance
of AnyCalib: their supervision, when compared to alterna-
tives, leads to learning patterns that are more useful. More-
over, since FoV fields are not tied to extrinsic cues, this
is what has allowed us to extend the training dataset with
panoramas not aligned with the gravity direction.

B. Datasets details

As mentioned in Sec. 3.3, we create four datasets. We sep-
arately train AnyCalib in each of them to study its accuracy
according to the trained projection models. The intrinsics
used to create the datasets are detailed in Tab. 6. For the
camera rotations’ we follow GeoCalib [86] and uniformly

7For panoramas not aligned with the gravity direction, these rotations
are only approximate.

Experiment RE {v,h}FoV  MACs
AnyCalib 2381 2.89 3.02 187.8G
1. Learning rays as [100]  26.05 3.13 3.24 187.8G
2. Learning rays as [8] 2495 3.02 3.13 187.8G
3. Original DPT [67] 2499 3.00 3.12 243.2G
4. Orig. OpenPano [86] 26.62 323 335 187.8G
AnyCalib 20.61 3.90 3.38 n/a

5. RANSAC in KB [39] 1019 16.1 16.2 n/a

Table 5. Ablation study over representation, decoder design,
dataset and intrinsics fitting method. See Supp. A for details.

sample the roll and pitch angles within +45°. All datasets
are formed by sampling 16 square images in each of the
3651/202/202 training/val/test panoramas, which yields an
approximate distribution of 54k/3k/3k training/val/test im-
ages per dataset.

Obtaining the focal length. As shown in Tab. 6, we do
not directly sample the focal length f. Instead, to ensure a
uniform distribution of image FoVs, we indirectly sample it
from the rest of the parameters. For pinhole images, we use
the well-known conversion f = (H/2)/tan(FoV/2). For
BC [14] and EUCM [4 1], we note that, from Eq. (8):

H/2 R =sin(FoV/2) ,

F= R¢(R, Z)'  Z =cos(FoV/2),

13)
since we form the datasets with square images (H = W),
unit aspect ratio and centered principal point. During train-
ing, images are geometrically transformed on-the-fly to
match the training resolution and sampled aspect-ratio.

Ensuring valid intrinsics. Independently sampling intrin-
sics of BC [14] and EUCM [4 1] can lead to projection mod-
els that project different, distant, rays to the same image co-
ordinates [47], which is not physically valid. We guard for
this by clamping f according to its limits [47, 85]:

BC o £ 0 ith =20, (14)
- ) .
B ’rmax(lrr}ﬂ'ﬁmx) ifk <0,
0 if 0 < 0.5
EUCM — f> ta=uo s
rimy/B(2a—1) ifa>05,

where i, = 0.5(H? +W?2)% and rpay = 1/v/ -3k .

Mapping LensFun coefficients. As explained in Sec. 3.3
and Fig. 4, we use the LensFun database [4] for defining
the sampling bounds of EUCM’s « and 8. LensFun uses



Data  Models FoV [°] k=kH /f « 38
OP, 100% pinhole  24(20, 105) - - -
OP; 100% BC [14] U(20,105)  N¢(0, 0.07, [—0.3, 0.3]) - -
OPqy  50% BC[14] 4(20,105)  N:(0, 0.07, [~0.3, 0.3)) - -
50% EUCM [41]  U(50, 180) - U(0.5,0.8)  U(0.5,2)
OP,  34% pinhole (20, 105) ; - -
33% BC [14] U(20,105)  N¢(0, 0.07, [—0.3, 0.3]) - -
33% BUCM [41]  U(50, 180) - U(0.5,0.8)  U(0.5,2)

Table 6. Sampling distributions within the datasets. {(a, b) denotes a uniform distribution € [a, b]. N¢(u, o, [a, b]) denotes a
normal distribution N (u1, o) truncated at [a, b]. OP, and OP; follow the setup of GeoCalib [86]. Since the distortions allowed by the
Brown-Conrady (radial) model [14] are limited [47, 85], for creating OP4q and OP,, we use EUCM [41] to generate strongly distorted
images. The limits for sampling its parameters o and (3 are based on real-lens values from the public LensFun database [4] (Fig. 4).
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Figure 5. Sample images and intrinsics from the dataset OPg.

its own polynomial distortion models®, so we need to map
them. Conveniently, our formulation in Sec. 3.2 is applica-
ble: given normalized image coordinates (obtained with the
lens focal and image sensor size) and their unprojected rays,
we can linearly recover « and . For getting these unpro-
jections, we first undistort a uniform grid of image/sensor
coordinates using Newton’s root finding algorithm and fi-
nally invert the ideal (equisolid, equidistant, orthographic
or stereographic [4]) fisheye projection model of the lens.

Sample datapoints of OP, are shown in Fig. 5.

SExplained in https://lensfun.github.io/manual/v0.3.2/
group__Lens.html#gaa505e04666a189274ba66316697e308e

C. Model-agnostic evaluation

Intrinsics in different models. Different camera mod-
els, can have an order of magnitude difference in their focal
length f values [85, Tab. 3]. We visualize this behavior in
Fig. 6 by mapping the ground-truth Kannala-Brandt (KB)
[39] intrinsics from ScanNet++ [95] to UCM intrinsics us-
ing our formulation from Sec. 3.2. As shown, if we fix the
ground-truth KB focal length and only map the distortion
coefficients, the resulting UCM intrinsics fail to accurately
model the camera lens projection, leading to an undistor-
tion failure. The converse occurs when we also map the
focal length.


https://lensfun.github.io/manual/v0.3.2/group__Lens.html#gaa505e04666a189274ba66316697e308e
https://lensfun.github.io/manual/v0.3.2/group__Lens.html#gaa505e04666a189274ba66316697e308e
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Figure 6. The focal length (f) in different camera models can take significantly different values. We show this for UCM [55]. We map
the KB [39] intrinsics corresponding to an image from ScanNet++ [95] (left) to UCM following Sec. 3.2. We do this without fixing f,
i.e., also mapping it to UCM (middle) and fixing it (right). The resulting intrinsics are used to undistort the image. The same KB focal for
UCM leads to a model that does not truthfully model the lens, leading to a failed undistortion. The converse occurs when also mapping f.

Model-agnostic FoV. The horizontal (hFoV) and vertical
(vFoV) angular extents of an im-
age can be computed indepen-
dently of the camera model. To
compute the hFoV, we unproject
the rays located at the left and
right borders, based on the lo-
cation of the principal point, c
(yellow points on the schematic
on the right), and sum the angles between them and the op-
tical axis. The vFoV is computed similarly, but using the
top and bottom borders instead.

D. Linear constraints

Lochman et al. [52] show that the distortion parameters of a
wide range of camera models can be estimated linearly from
1D-1D correspondences between the radii on the retinal
plane, ||(x—c)/f||, and the ray radii, v X2 + Y 2. Building
on this, we show in this section that, together with Eq. (11),
all the intrinsics of a wide range of standard camera mod-
els can be linearly recovered from 2D-3D correspondences
between image coordinates x € €2 and ray directions in S2.

To obtain the remaining linear constraints, presented in
Tab. 1, we first define auxiliary variables according to the
notation in Sec. 3.2:

R, =VX?+4a?Y2, r.=|x—c|, (16)

0 = atan2(R,Z), r:= \/m, (I7)

di= VR + 22, 12 = (=) + (0 — ) /a?.
(18)

For forward camera models (Eq. (8)), the linear constraints

derive from Eq. (21):

wo)=x =7 o(R2) |y | v, a9

— x| =/ 6(R. 2) H[;;H L)

= Tc= f ¢(R, Z) Ra . (21)

by substituting the corresponding model-specific function
¢(R, Z) from Tab. 1.

Pinhole: r. = %Ra = R.f=2r..

Brown-Conrady:
R N
— f@ 2n
re=f (1 + ngzl kn(R/Z) ) ,  (22)

N
= 1.Z/f = Ra Y _kn(R/Z)*" =R,. (23)

n=1

Kannala-Brandt:

R N
re=fp 0+ > k6, (24)

n=1

N
= Rre/f— Ry » ka0 =R.0. (25
n=1
UCM:
R,

rc:ffd—l—Z

= Ru.f—rcdé=r.2. (26)

EUCM For this camera model, linearity in Eq. (21) is lost
when f is unknown. Instead, to estimate f, we use a proxy



camera model [39] that leads to practically the same focal
length value [52, 85]. Thus, instead of Eq. (10) we start
from r = ¢(R, Z) R, which for the EUCM model, leads to:

R

T a ﬂR2+ZZ+(1_a)Z’
— ra/BR? + Z2 = (1—a)Zr, (28)
= r?a?(BR? + Z%) = (R —(1—a)Zr)?, (29)
— r’R*a*B+2rZ(rZ — R)a = (R—7rZ2)*. (30)

27)

Division For this backward model, from Eq. (9) we know
that

X (u—cy)
FlY|=Xx|(v—c¢y)/al . @31
Z fo(r)

To remove the nonlinearity stemming from A\, we use an
approach similar to DLT [33]. Since both sides must be
parallel, their cross product is the null vector, which leads
to the following constraints:

f+Zk;?ZJ[ ]Z(xc), (32)

n=1

with k!, := k,,/ f>"~1. As inferred from Eq. (31), these two
equations are linearly dependent. Thus, we consider only
the norm of both sides, which results in:

olf + Z kren) = Zre . (33)

E. Additional qualitative results

We show qualitative results, using AnyCalibg,, (trained on
OP,) on perspective images in Figs. 7 to 10 and on dis-
torted images in Figs. 11 and 12. We also show undistortion
results using the same model in Fig. 14. Additional quali-
tative results on edited (stretched and cropped) images are
shown in Fig. 13, with AnyCalib being trained following
[34, 100] (Sec. 3.3).
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Figure 7. Qualitative results on perspective images in TartanAir [91] with AnyCalibgen—trained on OP,. The FoV field (6, and 6,) is
regressed by the network and ||@]| represents both its norm and the polar angle of the ray corresponding to each pixel. The predicted FoV
field is used to fit the camera model of choice. radial:i corresponds to the Brown-Conrady model with i distortion coefficients.
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Figure 8. Qualitative results on perspective images in Stanford2D3D [7] with AnyCalibgen—trained on OP,. The FoV field (6, and 6,)
is regressed by the network and ||@|| represents both its norm and the polar angle of the ray corresponding to each pixel. The predicted FoV
field is used to fit the camera model of choice. division:i corresponds to the division model with i distortion coefficients.
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Figure 9. Qualitative results on perspective images in LaMAR [69] with AnyCalibge,—trained on OPg. The FoV field (6, and 6y) is

regressed by the network and ||@|| represents both its norm and the polar angle of the ray corresponding to each pixel. The predicted FoV
field is used to fit the camera model of choice.
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Figure 10. Qualitative results on perspective images in MegaDepth [49] with AnyCalibg.,—trained on OP,. The FoV field (6, and 6,))
is regressed by the network and ||@|| represents both its norm and the polar angle of the ray corresponding to each pixel. The predicted FoV
field is used to fit the camera model of choice. kb:i corresponds to the Kannala-Brandt model with i distortion coefficients.
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Figure 11. Qualitative results on distorted images in ScanNet++ [95] with AnyCalibgen—trained on OP,. The FoV field (6, and 6,) is
regressed by the network and ||@|| represents both its norm and the polar angle of the ray corresponding to each pixel. The predicted FoV
field is used to fit the camera model of choice. kb:1i corresponds to the Kannala-Brandt model with i distortion coefficients.
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Figure 12. Qualitative results on distorted images in the Mono Dataset [23] with AnyCalibgen—trained on OP,. The FoV field (6, and
0y) is regressed by the network and ||@|| represents both its norm and the polar angle of the ray corresponding to each pixel. The predicted
FoV field is used to fit the camera model of choice. division:i corresponds to the division model with i distortion coefficients.
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Figure 13. Qualitative results on edited images with AnyCalib being trained following [34, 100] (Sec. 3.3).
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Figure 14. Qualitative undistortion results with AnyCalibg., (trained on OP,), on images from ScanNet++ [95] (top), Mono [23]
(middle) and captured with a Samsung NX 10mm F3.5 Fisheye lens (bottom), provided by ExploreCams—authors: crystal Yang (left) and
Imre Farago (right).


https://explorecams.com/photos/lens/samsung-nx-10mm-f3-5-fisheye
https://explorecams.com/photos/epidmHVSwD?lens=samsung-nx-10mm-f3-5-fisheye
https://explorecams.com/photos/dYXHUevDXw?lens=samsung-nx-10mm-f3-5-fisheye

