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A. Network Structure

Image encoder, decoder In this paper, we focus on con-
ditional entropy modeling based on a well-designed frame
codec. The frame codec employed in this work follows a
contextual encoding backbone [3, 8], comprising a frame
encoder, decoder, and a temporal context mining module.
The frame encoder employs 4 strided convolutional layers
achieving a 16x downsampling factor, while the frame de-
coder utilizes 4 strided transposed convolutions for upsam-
pling to reconstruct the input frame. The temporal con-
text mining module learns multi-scale temporal contexts di-
rectly from the propagated feature generated by the previ-
ously decoded frame ;1 and the optical flow ¥;. Multi-
scale contexts are used as a reference for both the encoder
and decoder. The frame codec map the input frame to a
sequence of tokens with dimension of 96 in latent space.
Consistent with previous works [5, 9], we employ Anchor
model [2] as the encoder for I-frames and set the GoP to 32.
We train the frame encoder E and decoder D with a hyper-
prior approach [1]. The well-trained model will serve as the
basis for the context-guided transformer entropy model.

To demonstrate the generalization capability of our con-
ditional entropy model, we additionally employ DCVC-DC,
proposed by Li et al. [6], as the frame encoder backbone.
The primary distinction of DCVC-DC with the above frame
codec lies in the improvements to the context network,
which differentiate it from our main experimental setup. For
further details, please refer to Li et al. [6].

Transformer entropy model As described in the main
text, the CGT model consists of temporal context resam-
pler (TCR) and an attention-guided masked model. The
attention-guided mask model consists of an encoder and a
decoder based on a teacher-student network architecture. To
maintain a concise and reusable structure, both the TCR and
decoder employ the same architecture. The detailed struc-
ture is illustrated in Fig 1, where the core of these modules
is the swin-transformer block. The swin-transformer block
alternates between using window multi-head self-attention

(Window-MSA) and shift-window multi-head self-attention
(S-Window-MSA) layers. For TCR and the decoder, we
introduce the window multi-head cross-attention (Window-
MCA) and shift window multi-head cross-attention (S-
Window-MCA) into the original Swin Transformer block to
handle queries and key-value pairs from different sources.
The cross-attention and self-attention mechanisms are ap-
plied alternately.

The input frame with (256,256, 3) is mapped to latent
space with (16, 16, 96) at first using the frame codec. Then
the latents y; 1, hyper-prior yy,,, and temporal-prior y;, are
utilized as temporal contexts. The temporal context such as
y¢—1 is resampled through TCR to obtain a corresponding
compact representation. The scale of resampling is con-
trolled by the shape of learnable quires, which is set to (1,
256, 768) in this paper. Then these temporal contexts are
concatenated with the swin-transformer encoder to generate
joint tokens, which are served as the key and value inputs of
swin-transformer decoder.

B. Training and Inference

Training details The loss function of the CGT model is

Lrp =R (Y,) + R(2:) + R(0) +X-d (e — &), (1)

bit-rate

distortion

where R is the bit-rate term, d is distortion term. We set co-
efficient A to 256, 512, 1024, 2048 for RD trade-off. We use
straight-through estimator (STE) to enable gradient propa-
gation through quantization operations during training.
Due to observed instability when training from scratch,
this work adopts a three-stage training approach in this
work. First, we train the frame encoder-decoder using ad-
jacent frames consisting of I-frames and P-frames. This
process follows the standard training procedure for image
codec, utilizing hyperprior training with the RD loss func-
tion. This stage focuses primarily on the reconstruction per-
formance of the model. We initialize part of parameters
with the weights of DMC [5] and then fine-tune for S00K
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Figure 1. Detailed structure of the components in our CGT model. The TCR and decoder employ the same architecture for concise. In
practice, the number of the temporal context resampler is set as 1, the swin transformer encoder have 2 blocks, and the swin transformer

decoder have 4 blocks.

steps. This stage emphasizes the distortion performance of
the model. In the second stage, we use three consecutive
frames as model input and freeze the frame codec param-
eters, training only the CGT conditional entropy model for
1M steps. This stage continues to train the model using ad-
jacent frames consisting of one I-frame and two P-frames.
Finally, in the third stage, we incorporate the full video data
and perform end-to-end fine-tuning to reduce the cumula-
tive error between P-frames.

Analysis training paradigm In the main text, we ana-
lyzed the decoding processes of existing conditional en-
tropy models and identified a common limitation: the lack
of explicit modeling of spatial context dependencies. In
this section, we further examine the training paradigms of
different conditional entropy models, highlighting why our
CGT model effectively captures and explicitly models the
dependency within spatial context.

For autoregressive-based [7] and checkerboard-based [4]
methods, the training and inference processes are strictly
aligned, ensuring a consistent decoding strategy. However,
this rigid structure prevents the model from differentiating
the importance of contextual information at either stage,
as it treats all available contexts equally without explicitly
prioritizing more informative regions. MIMT [9] adopts
a minimum-entropy principle for decoding and trains the

model using a random masking proxy task. Since the model
passively adapts to random masking during training while
actively selecting the optimal path during inference, this
approach, despite increasing training diversity, struggles to
fully cover all possible minimum-entropy paths at infer-
ence. This limitation is particularly pronounced in complex
videos with dynamically changing local features, where the
optimal entropy-minimizing trajectory varies significantly.
We draw inspiration from the aforementioned training
paradigms and introduce a teacher-student network along
with a soft top-k strategy within the proxy task. During
training, the teacher model selects the most contextually rel-
evant regions for prioritized decoding, which then serve as
the context for the student network’s decoding process. This
approach not only explicitly models the importance of spa-
tial context but also ensures consistency between training
and inference, bridging the gap between the two stages.

Training and inference of CGT model The training pro-
cess of our CGT conditional entropy model is illustrated in
Algorithm 1. And the inference process of our CGT condi-
tional entropy model is illustrated in Algorithm 2.



Al

gorithm 1 Training process of CGT model

Input: y,, temporal context ¥, Yn,,, Ji—1-
Output: pi, 0y

1: Resample v, 37, and ;1 using TCR;

2:

Fuse the resampled temporal context using swin trans-
former encoder;
Apply random masking to current latent:y® = y; + M;

4: Perform cross-attention between the fused context and

y; using teacher network;

Cross-attention calculation between fused context and
y? using teacher network;

Generate attention map A and entropy map H based
on cross-attention output, and perform dependency-
weighted processing aH + (1 — a) A;

Apply soft top-k selection and remove the mask at se-
lected positions;

Decode the entire latent according to the initially de-
coded context;

Obtain (i, o, through linear mapping.

Al

gorithm 2 Decoding process of CGT model

Input: Context y;,, Yn,, J:—1, bit-stream, decoding step n.
Output: ;.

1
2
3:
4
5

: Decoded v; and Z; from bit-stream,;
: Decoded the temporal-prior y;,, and the hyperprior yy, ,;
while : < n do

Resample y;,, yn,, and g1 using TCR;

Fuse the resampled temporal context using the swin
transformer encoder;

Perform cross-attention between the fused context
and 7 using the swin transformer decoder;

Generate attention map and entropy map based on
cross-attention output;

Perform dependency-weighted processing and ap-
ply top-k selection;

Decode distribution of the top-k position;
: end while
: Decode the current frame using entire distribution pa-
rameters.
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