The Appendix is structured as follows:

* Appendix A discusses our choice of evaluation metrics, specifically explaining why we did not use CLIPScore.

* Appendix B presents additional ablation studies, discussing the optimal self-attention layer for fine-tuning and the sensi-
tivity of our method to the sampling guidance scale w.

* Appendix C provides the comparison between our method and an adapted training-free-based approach, which confirms
the superiority of fine-tuning-based approaches to enhance text-image alignment.

* Appendix D offers the pseudocode of our method.

* Appendix E provides a deeper exploration, including comparison experiments with a better backbone model.

» Appendix F discusses the potential limitations of our work.

A. The Discussion upon Evaluation Metrics

CLIPScore [27] is widely used to evaluate text-image alignment by processing generated images and their corresponding
guided texts through CLIP’s vision and text encoders, respectively, and then computing the cosine similarity between their
latent representations. However, we do not use this metric because the inherent bias in the CLIP model can distort the
evaluation. As discussed in Section 4, CLIP’s text module produces biased representations when handling correlated tokens,
which contributes to the pre-trained model’s failure in generating accurate images. Consequently, using CLIPScore can
introduce bias and lead to inaccurate judgments.
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Figure 9. The comparison of several generated images aligning the provided text differently. Figure 9a shows a clear object omission
problem, yet it achieves the highest CLIPScore as reported in Table 6, highlighting the discrepancy between CLIPScore and human-
perceived text-image alignment.

Image CLIPScore BERTScore Human Evaluation

Figure 9a 0.2891 0.7823 Worst
Figure 9b 0.2495 0.8035 Middle
Figure 9c 0.2157 0.8076 Best

Table 6. Text-image alignment scores using different evaluation criteria for images in Figure 9. A higher score indicates better alignment
for both CLIPScore and BERTScore.

To illustrate this issue, Figure 9 and Table 6 present typical examples. The conditional prompt is “rusty tracks with an
old train”. We selected two images generated by the pre-trained model (Figures 9a and 9b) and one image generated by our
method (Figure 9c). Notably, Figure 9a fails to depict “train”, demonstrating an explicit object omission problem, while
Figure 9b—generated with a different seed—does show “train” in the upper right corner. Figure 9c exhibits the best text-
image alignment by successfully presenting both “train” and “tracks”. Yet, Table 6 shows that the worst image (Figure 9a)
achieves the highest CLIPScore. This is because CLIP, when processing correlated tokens, favors biased representations and,
as a result, assigns higher similarity scores to biased images that align well with its internal representations but not with
human judgment.



In summary, due to its limited capacity, CLIP is more biased than some large language or vision-language models, making
CLIPScore unsuitable for measuring text-image alignment in scenarios with potential token-level correlations. Instead, our
two evaluation measures—incorporating either a large vision-language model or human feedback—provide more reliable
assessments.

B. Further Ablation Study
B.1. Layer Selection

The ablation studies in Section 6.3 demonstrate how our sampling guidance and the hyper-parameter 7 affect the final gener-
ated images. In addition to these functional components, we conducted an experiment to determine which self-attention layer
in the text module is most effective for our fine-tuning process. Using the prompt “a peaceful trail stops at a trash bin” (the
same as in Section 6.3), the results are presented in Figure 10. We observed that fine-tuning the last (11th) layer of the text
module yields the best performance across both evaluation metrics, whereas fine-tuning middle layers (layers 6 to 9) does not
significantly enhance text-image alignment.
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(a) Variation of FID by fine-tuning different self-attention layers. (b) Variation of BERTScore by fine-tuning different self-attention layers.

Figure 10. Ablation study on which layer to apply our method.

B.2. The Effect of Guidance Scale

We still use the conditional prompt “a peaceful trail stops at a trash bin” to investigate our method’s sensitivity to the
sampling guidance scale w. We set the default value at 7.5, as recommended for pre-trained Stable Diffusion. Table 7
presents the results. Our findings indicate that the guidance scale affects alignment within a certain range. In particular,
when w is set too low (e.g., 3.5), Eq. 6 becomes ineffective because the subtraction operation does not sufficiently steer
samples toward an improved direction. In addition, although setting w at 7.5 may not be optimal for both evaluation metrics
simultaneously, our method consistently outperforms baseline approaches in terms of both BERTScore and FID, provided
that w is not set too low. This further confirms the robustness of our approach.

Ours | Baselines
w | 3.5 5.5 7.5 (Default) 9.5 11.5 | Pre-trained Model = PAG  DisenDiff
BERTScore T | 77.30  77.89 78.76 78.94 7873 | 77.44 76.61  77.06
FID | | 162.37 146.26 129.59 137.01 132.97 | 244 .43 228.81 288.84

Table 7. The ablation study on guidance scale w. We omit % for BERTScore and attach the corresponding performances of baseline
methods in the last three columns.



C. Comparison with Modifying Attention Maps by Training-Free Approaches

In Section 5.1, we propose an approach that performs token-level decorrelation by fine-tuning the attention
maps—specifically, by lowering the attention probabilities of selected entries. One might ask why we do not simply ap-
ply training-free techniques to modify the attention maps. To address this, we conducted an experiment using ACT [40], a
training-free method originally designed to avoid attention sink by reducing the attention score of specified entries. As shown
in Table 8, our method outperforms the training-free modification in almost every layer of the text module. We attribute the
superiority of our approach to its ability to preserve interactions among unfocused tokens, as discussed in Section 5.2. Our
method uses the pre-trained attention map as a reference and only applies decorrelation to the focused entries, thus minimally
disturbing the original dependencies among irrelevant tokens. In contrast, training-free methods face the critical challenge of
reducing extra attention probabilities caused by token-level correlations and reallocating them appropriately. Techniques like
ACT, which assign constant values to attention scores, cannot effectively capture the complex dependencies across inputs.
Therefore, we adopt a fine-tuning-based paradigm to achieve better text-image alignment.

Modified Layer |0 1 2 3 4 5 6 7 8 9 10 11
BERTScore + | ACT | 7324 7451 7428 7486 7538 7553 7505 7547 7696 7644 7789 7559
T\ Ours [76.92 7847 7561 7581 7800 7707 7604 7515 7374 7694 78.66  78.76
FID | ACT | 36437 39724 451.01 292.19 26151 26301 241.81 24761 22866 24246 17835 291.11
Ours | 24381 13585 35179 27255 16356 159.66 307.10 29399 290.16 368.10 14121 129.59

Table 8. The comparison between our method and the training-free-based modification approach. We omit % for BERTScore.

D. Pseudocode

Algorithm 1 The pseudocode of our fine-tuning based method.
Input: The token list TOK which is generated from tokenizing the conditional prompt, the index of token Ziyge Which
represents the missing object, the original pre-trained Stable Diffusion model 6
Parameters to be optimized: the 11-th self-attention block in the text module of a Stable Diffusion model 6
Output: A decorrelated model
// Fine-tuning Stage
Initialize 6, 0 with 6
Obtain A, the self-attention map of pre-trained model 6, as reference
Find the token (except BOS token) with the highest attention value on TOK [tyee], record its index as Zeor
while the training epoch has not reached its end do
Obtain the attention map of @, record it as A _
Use Egq. 2 to fine-tune 6, then obtain its new attention map A
if Eq. 5 computed with A from 6 is smaller than that from 6 then
Update 6 with current 6
end if
end while
// Sampling Stage
Estimate the conditional noise with Eq. 6, conduct denoising operations until finishing reconstructing the sample

E. Deeper Exploration

We have also deployed our method on SDXL [25] (with ~3X the size of Stable Diffusion V1.5), which performs better
than Stable Diffusion V1.5. The results are listed in Table 9. We could observe that using a newer and larger pretrained
model improves text-image alignment to some extent. However, Figure 11’°s samples reveal that SDXL still suffers from this
problem, especially those in the red box. Thus, solely relying on model size is not a definitive solution, as correlation is
inherent in pre-training data. Instead, decorrelation operations like ours directly face the core issue and offer a more efficient
approach, as confirmed by the performance improvement when applying our method to SDXL in Table 9.



As discussed in the main text, the limitations of the text encoder in Stable Diffusion are a major source of the misalignment
issue. This problem may be largely mitigated in models with stronger text understanding, e.g., Stable Diffusion 3 [9] or
FLUX [21]. However, we emphasize that while enhancing the text encoder or scaling its size can improve generation
quality, it does not address the core issue—namely, the inherent bias in the training data. Without access to higher-quality or
more balanced data, model-level improvements alone are insufficient. In contrast, our method provides a more efficient and
practical solution to reduce misalignment.

Model ‘ Methods ‘ Object Pair 1 Object Pair 2 Object Pair 3
| | BERTScoret  FID| | BERTScoret  FID| | BERTScoret  FID |
SDyl.s | Pretrain | 7699 £123 20040 | 7867 £161 30074 | 75.14£218 26128
Ours 77.68 £1.07 13729 | 79.68 £1.49 23242 | 759242.14  170.79
opxL | Pretrain | 77.84£1.02 16433 | 7924£102 21845 | 76084399  167.63
Ours 77.57£1.91  143.83 | 80.34 £0.94 21241 | 77.70 £272 14941
Figure 11. The images generated by dif-
ferent models under the same fixed seeds. Table 9. The experiments conducted on SDXL.

F. Potential Limitations and Further Discussions

In practical scenarios, leveraging more advanced or larger models can partially alleviate the misalignment issue. Such im-
provements generally fall into two categories: (1) adopting alternative text encoders such as BERT [7] or TS5 [28]; and (2)
using stronger base models like FLUX [21] or Stable Diffusion 3 [9]. These approaches often lead to a higher proportion of
high-quality generations, potentially reducing the necessity for our fine-tuning method.

However, replacing the text encoder is non-trivial due to architectural constraints. For example, the Stable Diffusion series
predominantly relies on CLIP, with some recent versions incorporating T5. In contrast, BERT is not widely adopted in this
pipeline. Although BERT may offer improved text understanding, integrating it would likely require retraining the entire base
model from scratch, which is computationally expensive. Our method, by comparison, is compatible with most mainstream
Stable Diffusion variants and requires modifying only 2.66% of the trainable parameters in Stable Diffusion v1.5, offering a
more efficient and accessible alternative.

Moreover, while our study focuses on correlation-induced misalignment within the Stable Diffusion framework, we be-
lieve that the identified issue—and our proposed mitigation strategy—may extend to other generative architectures. Exploring
this broader generalization is left for future work.
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