GeoDistill: Geometry-Guided Self-Distillation for Weakly Supervised
Cross-View Localization

Teacher Cross-Area Same-Area
Param Update Mean(]) Median(]) Mean(]) Median(])
Fixed 4.65 1.28 4.46 1.43
Prev. Student 5.02 1.37 4.49 1.44

EMA 4.49 1.22 4.26 1.37
Baseline 5.20 1.44 4.81 1.61

Table 1. Localization performance comparison with different up-
date strategies for the teacher network in the VIGOR dataset [? ].
Prev Student means using the student from the last epoch as the
teacher for the current epoch. Fixed means the teacher network
does not update during training. EMA refers to the exponentially
moving average teacher adopted in our method.

1. Teacher-student Parameter Update Strategy

We investigate different strategies for updating the teacher
model’s parameters, including keeping the teacher model’s
parameters fixed, denoted as “Fixed”, and using the stu-
dent model’s parameters from the last epoch as the teacher
model’s parameters for the current epoch, denoted as ‘“Prev
Student”. As shown in Tab. 1, all these different teacher pa-
rameters update strategy improves the performance over the
baseline model, demonstrating the effectiveness of our key
idea: using different FoVs to create a discrepancy between
teacher and student models, and this discrepancy works ef-
fectively as a learning signal to encourage the model fo-
cusing on discriminative local features that are useful for
cross-view matching. Compared to Fixed and our EMA pa-
rameters update strategy, Prev. Student suffers from abrupt
parameters shifts, which causes significant location predic-
tion inconsistency (before and after teacher parameters up-
date) for some examples, resulting in inconsistent supervi-
sion which negatively affects the magnitude of the perfor-
mance improvement. In contrast, our EMA update strategy
combines the merits of Fixed and Prev. Student. It inherits
the stability of a fixed teacher model while also adaptively
integrating the student’s refined knowledge, resulting in the
most considerable performance improvement.

2. Different Training Objectives for Self-
Distillation

To evaluate the impact of different training objectives, we
performed an ablation study comparing Cross-Entropy (CE)
and Kullback-Leibler Divergence (KLD) as loss functions
for our student network. Table 2 shows that CE and KLD
achieve a similar localization accuracy.

L Cross-Area Same-Area
0SS

Mean(].) Median(].) Mean(]) Median(])
KLD 4.50 1.22 4.25 1.37

CE (ours) 4.49 1.22 4.26 1.37

Table 2. Localization performance comparison with different
training objective in VIGOR dataset.

3. Comparison with Fully Supervised Methods
in VIGOR Same Area Test Set

Table 3. Localization performance comparison on VIGOR Same
Area test set. Best in bold. The second-best is underlined. Here,
“*#” indicates fully supervised methods.

. JLocalization JOrientation
Noise Method Mean Median | Mean Median
CVR[39]* 8.82 7.68 - -
SliceMatch[18]* | 5.18 2.58 - -
0° Boosting[26]* 4.12 1.34 - -
CCVPE[33]* 3.60 1.36 10.59 543
HC-Net[31]* 2.65 1.17 1.92 1.04
GeoDistll(ours) 4.26 1.37 - -
CCVPE[33]* 3.50 1.39 10.56 5.96
+45° HC-Net[31]* 2.70 1.18 2.12 1.04
GeoDistll(ours) 471 1.48 2.90 1.11

Here, we supply the comparison of GeoDistill using
G2SWeakly as backbone with state-of-the-art fully super-
vised methods in the Same-Area setting of the VIGOR
dataset in Tab. 3. As anticipated, fully supervised methods
generally perform better in the same-area setting than our
weakly supervised GeoDistill framework. This is because



fully supervised methods are trained with precisely anno-
tated ground truth data within the same geographic area
used for testing, allowing them to effectively learn area-
specific features and optimize for performance within the
training distribution. In contrast, GeoDistill, trained with
weakly supervised noisy GPS data and designed for cross-
area generalization, is not explicitly optimized for same-
area performance.

For the cross-area evaluation, as highlighted in the main
paper, GeoDistill achieves the second-best performance
among the compared fully supervised approaches, high-
lighting its excellent generalization ability compared to
fully supervised approaches.

4. Evaluating GeoDistill with Unlabeled Target
Domain Data

For completeness, we evaluated GeoDistill under the un-
labeled target domain data assumption of [34]. Intrigu-
ingly, retraining CCVPE [33] with GeoDistill yielded sim-
ilar performance using either source (4.05m mean error)
or target domain data (3.95m) without GT, aligning with
[34]’s weakly supervised distillation (3.85m) for domain
adapting. However, target domain data availability is of-
ten impractical, limiting real-world applicability. More-
over, while [34] uses reliable teacher predictions as pseudo-
labels for retraining, generalization to truly unseen regions
remains a concern. Like fully supervised methods, target-
domain fine-tuning approaches risk performance degrada-
tion when encountering new out-of-distribution data. Con-
versely, GeoDistill’s key advantage is achieving significant
generalization gains by retraining solely on source domain
data. This enables robust generalization to arbitrary un-
seen cities, offering a more scalable and practical solution.
GeoDistill’s ability to match target-domain adaptation per-
formance without requiring target data, while ensuring su-
perior generalization, underscores its practical utility and
generalization prowess.



	Teacher-student Parameter Update Strategy
	Different Training Objectives for Self-Distillation
	Comparison with Fully Supervised Methods in VIGOR Same Area Test Set
	Evaluating GeoDistill with Unlabeled Target Domain Data

