A. Training Details and Hyperparameters
A.1. MetaMorph Training

We follow the training recipe outlined in prior studies [46,
63], using a two-stage training approach. First, we pretrain a
two-layer MLP with a GELU activation [22] as the adapter
between the visual tokens and the LLM. We train this adapter
on Cambrian adapter data while excluding all data points
sourced from LAION [56]. Next, we finetune the entire
model, excluding the vision backbone, using the instruction
tuning data described in Sec. 2.2 and detailed in Appendix C.

We use DeepSpeed [53] Zero-3 to train our model on
H100 GPUs. Detailed training hyperparameters for all ex-
periments are provided in Tab. 2. We conduct all of the
experiments with 1 epoch.

A.2. Diffusion Visualizer Training

We leverage pretrained diffusion models such as Stable Dif-
fusion 1.5 [55]. We use a 2-layer MLP projector to align
the SigL.IP embedding dimension with the cross-attention
dimension in the pretrained diffusion model. The first layer
applies a linear transformation to map the input dimension
to 2048, followed by layer normalization [7] and a ReLU
activation. The second layer reduces the 2048-dimensional
features to the output dimension through a linear transforma-
tion, followed by a final layernorm.

We set the batch size to 2112. The learning rate schedule
begins with a logarithmic warm-up over the first 2000 steps,
gradually increasing from zero to a peak value of 1.1e-5.
After this warm-up phase, the learning rate decreases linearly
over the next 12000 steps until reaching zero. We use the
AdamW [41] optimizer to train our model, with 5 parameters
(0.9,0.999). We apply a weight decay of 0.01.

During diffusion training, we freeze the VAE encoder and
Siglip encoder, only training the projector and the diffusion
unet. The CFG level is set to 0.7. This is because we start
with a pretrained diffusion model and aim to transform the
conditioning from CLIP text to SigLIP image embeddings.
A higher CFG level ensures the model maintains high image
quality while gradually adapting to the new conditioning in
the remaining fraction. Empirically, this approach achieves
the best balance between adaptation and image quality. For
the training datasets, since we finetune the diffusion model to
condition on SigLIP image embeddings, training this model
does not require text descriptions for conditioning. Instead,
we use images curated through in MetaCLIP [76] and train
this diffusion model to visualize the visual tokens generated
by MetaMorph.

A.3. Evaluation Benchmarks

For evaluation, we use nine ImageQA, one VideoQA and
two generation benchmarks:

* MMBench [40]: A comprehensive benchmark spans
across 20 multimodal ability dimensions.

* Seed [19]: A benchmark focusing on visual tasks for
multimodal understanding, consists of 19k multiple choice
questions with accurate human annotations.

* V*STAR [72]: A VQA benchmark designed for testing
details in high-resolution images.

* MMVP [65]: A benchmark for evaluating “CLIP-Blind”
pairs in Vision Language Models.

» MMMU [78]: A benchmark designed to evaluate multi-
modal models on extensive multi-discipline tasks requiring
college-level subject knowledge and deliberate reasoning.

* ChartQA [45]: A large-scale benchmark involving visual
and logical reasoning over charts.

* TextVQA [58]:A benchmark designed to evaluate models’
ability to read and reason about text in images to answer
questions.

* ScienceQA [44]: A multimodal benchmark for answering
science-related questions requiring integration of visual
and textual data.

e RealWorldQA [74]: A benchmark focused on real-world
multimodal reasoning tasks.

* MV-Bench [33]: A benchmark contains a comprehensive
video understanding benchmark, which covers 20 chal-
lenging video tasks that cannot be effectively solved with
a single frame.

* FID Score [24]: A metric for evaluating the quality of
generated images by comparing their feature distributions
with real images.

e CLIP Score [23]: A benchmark metric that uses CLIP em-
beddings to measure alignment between generated images
and their corresponding text descriptions.

B. Ablation Studies on Visual Prediction Objec-
tive

We compare our approach to the commonly used L1 regres-
sion loss, which has been widely adopted in contrastive self-
supervised learning methods [8, 31]. For this comparison,
we train MetaMorph, based on LLaMA-3 8B, using datasets
described in Sec. 2.2. We highlight that cosine similarity
and L1 loss influence the embedding outputs differently: co-
sine similarity enforces normalization, while L1 loss does
not. This discrepancy in output normalization prevents a
direct and fair comparison in terms of generation perfor-
mance. Consequently, our analysis focuses exclusively on
VQA performance.

In Tab. 3, we compare models trained using L1 loss and
cosine similarity loss. Our analysis reveals that training with
cosine similarity results in better average performance and
outperforms L1 loss on most benchmarks. Notably, these
vision loss functions affect only tasks requiring visual predic-
tions and do not directly influence VQA tasks, as the VQA
training data does not include image token responses. This
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Table 2. Implementation details and hyperparameters for all experiments. *We exclude data points in LAION [56] from Cambrian
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Figure 11. Data composition. Left: The inner circle shows the
distribution of MetaMorph data. Right: All the data sources and
categories in the MetaMorph data.

improvement is potentially because training with cosine sim-
ilarity enhances visual generation, which in turn contributes
to better visual understanding.

To  further investigate, we  compare  our
method—incorporating a broader range of non—VQA
data alongside Cambrian-7M——with a baseline trained
exclusively on Cambrian-7M. The results show that
combining broader dataset with cosine similarity loss
leads to better performance across multiple benchmarks.
This finding reinforces our earlier observations in Sec. 3:
enhancing visual generation capabilities contributes to
improved visual understanding, highlighting the benefits of
leveraging non-VQA data.

C. Data
C.1. Data Composition

We summarize the categorization of data and the number of
samples for each source in Fig. 11. This diverse dataset is
curated to showcase that an LLM can be finetuned across a
variety of tasks, where each task contributes to and enhances
the performance of others, as discussed in Sec. 3.1.

C.2. Data Proprocessing

As discussed in Sec. 2.2, we use a wide range of data, span-
ning from visual question answering tasks to unlabeled video
data. Here, we detail the preprocessing steps applied to each
data source to convert them into instruction-tuning-style QA
conversations.

ImageQA. We use Cambrian-7M [63], a dataset already
curated in instruction tuning format. An example entry looks

like the below:

Example from ImageQA

Prompt:

<image_start><image><image_end> What is the
animal in the image?

Response:

It is a burmilla cat.

VideoQA. We use VideoStar [87] and ShareVideo [12], both
curated in an instruction tuning format. For each video, we
extract frames at a rate of one frame per second and input
these frames into the LLM. An example QA entry for an
8-second video is structured as follows:

Example from VideoQA

Prompt:

<image_start><image><image_end>
<image_start><image><image_end>
<image_start><image><image_end>
<image_start><image><image_end>
<image_start><image><image_end>
<image_start><image><image_end>
<image_start><image><image_end>
<image_start><image><image_end>

What'’s the color of the dog in this video? (a) white (b)
yellow (c) black Please only answer a single letter and
nothing else

Response:

b

Generation data. We use image-text pairs in Meta-
CLIP [76]. The original data consists of images paired with
corresponding text descriptions. We add system prompts and
define answering formats, transforming the image-text pairs
into question-answer formats suitable for instruction tuning.
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Table 3. Comparison of different loss functions. Training with cosine similarity loss enables the model to effectively utilize non-VQA

data, which in turn enhances its visual understanding.

Example from Generation data

Prompt:

Generate an image of a puppy.

Response:

Here is an image based on your
<image_start><image><image_end>.

request:

Example from Image to image data

Prompt:

<image_start><image><image_end> Make this a
rainy day.

Response:

<image_start><image><image_end>.

Different from the ImageQA and VideoQA, we require
the model to predict the visual tokens in the response.

Visual Thinking Data. We explore incorporating vision as
part of the model’s reasoning process to enhance its answers.
As a preliminary step, we experiment with the Visualization-
of-Thought [57] and VStar [72] datasets. Originally, these
datasets were designed to teach models how to utilize exter-
nal tools and APIs, such as segmentation or zoom-in crop-
ping. In this work, we aim to integrate these visual skills
directly into the model’s inference steps. We use system
prompts, such as “think visually before you answer the ques-
tion”, to activate this visual reasoning mode. Here is an
example:

Example from Visual thinking data

Prompt:
Think visually before you answer the question:

what is the color of the hat in the image
<image_start><image><image_end>.
Response:

Let’s consider this visually:

<image_start><image><image_end> black.

In this example, the model first predicts a zoomed-in view
of the key region in the image necessary for answering the
question, and then it provides the answer.

Image to image data. The model is required to predict a
transformed image based on a given text description. We use
Aurora [28] and InstructPix2Pix [10] datasets to train this
capability. An example is presented below:

Here, the model is expected to predict the visual tokens
of the transformed image as per the specified prompt.

Pure video data. We explore commonly used open-
source video datasets in instruction tuning: SomethingSome-
thingV2 [20] and HowTo100M [47]. We design the follow-
ing tasks from the pure video:

1) Forward Frame Prediction. In this task, the model is
presented with the initial frame of a video sequence and must
predict the subsequent frames at fixed time intervals. An
example is presented below:

Example of Forward Frame Prediction

Prompt:

<image_start><image><image_end> Can you pre-
dict what happens in the next 3 frames, each 5 seconds
apart?

Response:

<image_start><image><image_end>
<image_start><image><image_end>
<image_start><image><image_end>

2) Partial Sequence Completion. This task requires the
model to complete a video sequence when given only a
subset of frames while maintaining temporal coherence:



Example of Partial Sequence Completion

Prompt:

<image_start><image><image_end>
<image_start><image><image_end>
<image_start><image><image_end> Can you pre-
dict the 2 missing frames in this 5-second-interval se-
quence?

Response:

<image_start><image><image_end>
<image_start><image><image_end>

. J

3) Reverse Temporal Prediction. This task challenges the
model to reconstruct the preceding frames given the final
frame of a sequence:

Example of Reverse Temporal Reasoning

Prompt:

<image_start><image><image_end> Work back-
wards to predict the previous 4 frames, each 5 seconds
apart.

Response:

<image_start><image><image_end
><image_start><image><image_end>
<image_start><image><image_end>
<image_start><image><image_end>

- J

4) Temporal Sequence Reordering. In this task, the model
receives a shuffled sequence of video frames and must re-
construct their correct temporal order:

Example of Temporal Sequence Reordering

Prompt:
<image_start><image><image_end>
<image_start><image><image_end>
<image_start><image><image_end>
<image_start><image><image_end>
Arrange these frames in their correct temporal sequence.
Response:
<image_start><image><image_end>
<image_start><image><image_end>
<image_start><image><image_end>
<image_start><image><image_end>

\ J

Each task is designed to train the model’s temporal under-
standing and visual reasoning capabilities.

C.3. Potential Image Leakage in Testing Data

When selecting data sources, we carefully choose those that
do not overlap with the testing sets of our evaluation data,
such as COCO [35]. However, given that the data used in a
Sec. 2.2 is composed of numerous sources, some degree of

data leakage may be inevitable. As discussed and analyzed in
a prior work [63], even when image overlap occurs, it does
not necessarily imply that the exact image-question pairs
have been encountered during training. Unlike traditional
unimodal computer vision research, where an image alone
constitutes a data point, the multimodal paradigm treats each
image-text (question-answer) pair as a distinct and unique
data point.

D. Generating Visual Tokens

Here, we include the quantitative results of all the experi-
ments in Sec. 3.

D.1. Results of Samples Needed to Unlock Visual
Generation

Tab. 4 presents the quantitative results corresponding to
Fig. 2, which examines generation performance under two
conditions: training exclusively on generation data and joint
training with all other data described in Sec. 2.2. The re-
sults demonstrate that the model can develop the ability for
visual generation with a relatively modest amount of data
when trained jointly with understanding tasks. In contrast,
teaching this skill in isolation requires a substantially larger
dataset.

In Tab. 5, we present the quantitative results correspond-
ing to Fig. 3, which investigates the impact of joint training
on generation data in combination with various types of data
outlined in Sec. 2.2. The results show that joint training
with visual understanding data—specifically ImageQA and
VideoQA——provides the most significant improvement in
visual generation performance.

D.2. Results of Joint training Different Understand-
ing and Generation Data

In Tab. 6, we present the numerical results of joint training
with varying scales of understanding data (1M, 4M, 7TM)
and generation data (200k, 500k, 1M, 2M, 3M, 4M). These
findings demonstrate that increasing the amount of under-
standing data yields more substantial improvements in both
understanding tasks (e.g., VQA performance) and genera-
tion tasks (e.g., FID scores and CLIP scores) compared to
increasing the amount of generation data. These results, con-
sistent with our analysis in Sec. 3.2 and Sec. 3.3, highlight
that understanding data play a more pivotal role in enhancing
performance across both task types.

D.3. Results of Training on Different LL.Ms

We present the results of training with 7M VQA data and
IM generation data across various LLM backbones, includ-
ing LLaMA-3 8B, LLaMA-3.1 8B, and LLaMA-3 70B. As
shown in Tab. 7, which corresponds to the results in Fig. 6,
we observe that stronger LLM backbones lead to improve-
ments in both visual understanding and visual generation.



Joint train With Other Data # of Generation Data | FID Score
Yes 1k 68.5
No 1k 115.0
Yes 5k 19.2
No 5k 116,4
Yes 10k 18.7
No 10k 111.0
Yes 50k 17.1
No 50k 111.8
Yes 200k 152 .
No 200k 110.7
Yes 200k 14.7
No 200k 93.7
Yes IM 14.4
No 1M 52.8
Yes 3M 15.1
No M 39.2
Yes M 14.3
No M 27.7

Table 4. Results of training solely on generation data vs. joint
training with additional data. These results correspond to Fig. 2.
Joint training with additional data significantly improves generation
performance. At 5,000 samples, the model begins to generate
reasonably accurate visual tokens, indicating that visual generation
is an ability unlocked through the learning of other tasks.

These findings further support the conclusion that visual un-
derstanding and generation are reciprocal processes, where
advancements in one drive enhancements in the other.

E. More Examples of MetaMorph

We provide additional examples of MetaMorph in Fig. 12
and Fig. 13. These examples illustrate how MetaMorph
extends beyond the capabilities of typical MLLMs by lever-
aging learned skills to perform novel tasks such as visual rea-
soning and visual transformation. In Fig. 12, when prompted
with the question “What is the type of hat?”, MetaMorph
first generates visual tokens related to hats and then answers
correctly with “fop hat”. The model also demonstrates the
ability to perform image transformations, such as creating a
cartoon version of an image or altering it to appear as day-
time. Additionally, we showcase examples of MetaMorph
solving implicit puzzles, such as interpreting “a rearrange-
ment of the letters in the word ’tca”’, before generating the
corresponding visual tokens of cats.



Joint training Data Data Type FID Score  CLIP Score
None - 110.5 5.7
Image-to-Image Other Visual Data 97.5 6.4
Visual Thinking Other Visual Data 93.5 6.5 .
Pure Video Other Visual Data 84.7 8.1
VideoQA | Visual Understanding Data 26.5 16.1
ImageQA | Visual Understanding Data 18.9 22.0

Table 5. Impact of joint training 200k generation data with different data types. These results correspond to Fig. 3. Among the data
types analyzed, joint training with visual understanding data has the most significant impact on enhancing visual generation performance.
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) Y G 200k | 538 731 688 550 347 812 385 440 295 592 [ 214 205
4M 500k 533 73.0 699 553 327 80.6 402 393 296 589 | 160 248
4M IM 542 738 69.6 549 333 821 366 456 324 599 | 160 248
4M 2M 538 728 703 552 373 80.8 368 440 312 562 | 156 247
4M 3M 543 718 70.1 577 360 81.0 38.0 429 326 59.0 | 16.1 2438
4M 4M 544 752 699 560 373 814 38.1 408 31.6 593 | 153 255
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™ 500k 556 744 70.6 562 387 819 379 440 360 605 | 152 255
™ IM 558 743 703 563 427 813 366 445 358 60.6 | 145 266
™ 2M 554 739 71.1 569 400 81.6 359 424 354 616 | 148 27.1
™ 3M 556 742 71.0 573 380 81.1 40.1 435 350 602 | 142 275
™ M 562 754 704 554 440 804 396 450 352 602 | 149 263

Table 6. Full results of joint training on varying amounts of VQA data (1M, 4M, 7M) and generation data (200k, 500k, 1M, 2M,
3M, 4M). These results correspond to Fig. 4, Fig. 5, Fig. 7, and Fig. 8, which analyze how different combinations of understanding and
generation data impact the model’s visual understanding and generation performance.
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LLaMA-3 8B 55.8 743 703 563 427 813 366 445 358 60.6 | 145 266
LLaMA-3.18B | 56.7 75.8 702 562 447 819 412 434 360 613 | 132 271
LLaMA-370B | 60.7 80.7 726 583 487 87.8 489 471 374 650 | 13.8 26.8

Table 7. Full results of training on different LLMs. We train 7M VQA data and 1M generation data on different LLM backbones
(LLaMA-3 8B, LLaMA-3.1 8B, and LLaMA-3 70B) and measure understanding and generation performance.
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Make a child cartoon from it How many birds are in the image and why?

<image_start><image_end> T'her.e is only one bird}in the image. Thg

5 = bird is captured in a single frame, and its
reflection in the water creates the illusion
of two birds.

Generate an image of the pet animal whose
name is a rearrangement of the letters in the
word ‘tca’

Here's the generated image based on
your request: <image_start><image_end>

Reflect on the visual details: What's the type of
hat that animal wear in the image?

Let's imagine the critical detail: What's the animal in this image?

<image_start><image_end> The animal is
wearing a top hat.
The animal in the image is a domestic

A cat, specifically a tabby cat. Tabbies are
characterized by their distinctive coat
patterns, which include stripes, dots, and
swirling patterns. The markings on this

cat's face, with the 'M' shape on its
forehead and the stripes on its ears, are
typical of a tabby pattern.

Is the coke in the ads regular or zerosugar?

The coke in the ads is zero sugar.

Figure 12. Examples of MetaMorph (I). We showcase examples of MetaMorph’s capabilities: transforming images based on prompts
(top-left), answering challenging questions (fop-right), integrating visual tokens into reasoning processes (bottom-left), implicitly solving
puzzles (bottom-right) and answering tricky video-qa questions. (bottom).



Generate an image of a puppy

Here's the generated image based on
your request: <image_start><image_end>

What's this city?

The city in the image is New York City,
specifically the Lower Manhattan area,
which is home to the iconic World Trade
Center complex. The presence of the
One World Trade Center, which is the
tallest building in the image, is a
distinctive feature.

Generate an image of Kagu
Can you turn it to view during the daytime?

Here's the generated image based on

<image_start><image_end> your request: <image_start><image_end>

Figure 13. Examples of MetaMorph (II).We showcase more examples of MetaMorph’s capabilities: answering questions and transforming
images in one conversation (left), generating images (top-right), and leveraging knowledge in LLMs to generate rare concepts (bottom-right).
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