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A. Training Setup

This section details the implementation of the I2EvDet
framework as applied to event-based object detection. The
training methodology reflects a two-stage adaptation ap-
proach: first establishing a robust spatial detector founda-
tion then incorporating minimal temporal processing while
preserving the pre-trained model’s representation capabil-
ities. This implementation demonstrates how mainstream
detectors can be efficiently adapted to temporal data with
minimal architectural changes

A.1. RT-DETR

Our RT-DETR model is based on the reference PyTorch im-
plementation' [13, 14]. We explore two RT-DETR configu-
rations: RT-DETR-T (corresponds to RT-DETR-ResNet18)
and RT-DETR-B (corresponds to RT-DETR-ResNet50).
The RT-DETR configurations match the reference imple-
mentations, except two modifications: (1) we change the
number of input channels of the backbones from 3 to 20,
and (2) we do not use ImageNet pre-trained backbones. Ta-
ble 1 summarizes the differences between the RT-DETR-
ResNet18 and RT-DETR-ResNet50 configurations.

Configuration RT-DETR-T RT-DETR-B
Backbone ResNet-18 ResNet-50
FPN Features [128,256,512] [512,1024,2048]
Encoder Expansion x0.5 x1.0
Decoder Layers 3 6

Table 1. Comparison of the RT-DETR-T and RT-DETR-B Config-
urations.

We train all RT-DETR models for 400,000 iterations us-
ing the Adam optimizer [7] with a batch size of 32 and a
learning rate of 2 x 10~*. Similar to the reference RT-
DETR training, we maintain an exponential moving average
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(EMA) of the model weights with a momentum of 0.9999.
Unlike the reference RT-DETR training, we do not use any
learning rate schedules or reduce the learning rate of the
backbone relative to the encoder-decoder parts.

Environment. The RT-DETR training is conducted with
PyTorch-2.2.2 and torchvision-0.17.2 on a
single NVIDIA RTX A6000 GPU.

A.2. EVRT-DETR

The EvRT-DETR-T and EvRT-DETR-B models respec-
tively extend RT-DETR-T and RT-DETR-B by adding Con-
vLSTM modules [11]. Our ConvLSTM blocks use a hidden
dimension of 256 (matching the encoder feature maps) and
a kernel size of 3. The temporal module outputs are in-
tegrated into the base model through residual connections
with a scaling factor of 1.0 as we found learnable scaling
parameters (similar to ReZero [1]) provide no measurable
performance benefit on the Genl dataset.

The ConvLLSTM modules are trained jointly for 200,000
iterations with the Adam optimizer and a batch size of 8
while keeping the baseline RT-DETR models frozen. Each
batch contains 8 short clips of consecutive frames: 21
frames for Genl dataset and 10 frames for 1Mpx dataset.
The number of frames per clip follows RVT’s approach [6],
except we increase the number of frames for the 1Mpx
dataset from 5 to 10 for better performance. Each batch
contains 4 randomly sampled clips and 4 consecutive clips
from videos.

Unlike the baseline RT-DETR training with a constant
learning rate and EMA averaging, we do not apply EMA
averaging to the ConvLSTM modules and use a learn-
ing rate scheduler instead. For simplicity, we rely on the
RVT-inspired one-cycle LR scheduler [12]. Specifically,
we use PyTorch’s OneCycleLR implementation of the
scheduler, with the following parameters: maximum LR
2% 1074, initial div_factor 20, final div_factor 500,



pct_start 0.0005, and annealing strategy “linear.”

The ConvLSTM modules are trained in the same envi-
ronment as the baseline RT-DETR networks using a single
NVIDIA RTX A6000 GPU.

A.3. YOLOX Baselines

We implement YOLOX baselines to demonstrate the gen-
eralizability of our I2EvDet framework beyond RT-DETR.
We use the reference YOLOX backbone and head imple-
mentations® [4, 5]. The only architectural modification is
changing the number of input channels of the backbone
from 3 to 20.

To ensure fair comparison across architectures, we train
YOLOX baselines using exactly the same setup as RT-
DETR (cf. subsection A.l). Specifically, we train for
400,000 iterations using the Adam optimizer with a batch
size of 32 and a learning rate of 2 x 1074,

The inference is performed with NMS threshold of 0.65
and confidence threshold of 0.01.

A.4. I2EvDet on YOLOX

Following our I2EvDet framework, we extend the YOLOX
baseline with temporal processing capabilities. We freeze
the pre-trained YOLOX parameters and insert ConvLSTM
modules between the PAFPN [8] neck and detection head.

The ConvLSTM modules follow the same configuration
as EVRT-DETR: hidden dimension of 256, kernel size of
3, and residual integration with scaling factor 1.0. Train-
ing follows the identical protocol as EvRT-DETR with
200,000 iterations using the Adam optimizer and OneCy-
cleLR scheduler (max LR 2 x 10~%). Each batch contains 4
random and 4 consecutive clips of 21 frames (Genl) or 10
frames (1Mpx).

A.5. Notes on Two-Stage versus End-to-End Train-
ing

While developing the I2EvDet framework, we experi-
mented with both end-to-end and two-stage training ap-
proaches. For the end-to-end training, we combined the RT-
DETR model with the ConvLSTM temporal adapters and
trained them jointly. Our experiments indicate that the two-
stage training approach enables significantly faster conver-
gence compared to end-to-end training with much higher
stability. Moreover, in our experiments, the two-stage train-
ing has no performance downsides compared to the end-to-
end training.

Based on these observations, we adopt the two-stage
training approach in this work. An additional benefit of two-
stage training is it enables experimentation with different
temporal modules on the same spatial detector baseline, ac-
celerating development and providing clear separation be-
tween spatial and temporal performance components.
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We note that our end-to-end training experiments did not
involve extensive hyperparameter exploration, so it is possi-
ble that alternative hyperparameter configurations may im-
prove end-to-end training performance. However, the two-
stage approach has proven more robust and practical for our
framework development.

A.6. Data Augmentation Strategy

While data augmentation is standard practice in computer
vision [2, 3], its application to event-based data has been
limited [10]. Our adaptation framework treats EBC data as
image-like frames, allowing us to leverage established aug-
mentation techniques from mainstream computer vision.

Our augmentation strategy employs a standard chain of
geometric transformations and random erasing as summa-
rized in Table 2. This approach bridges conventional im-
age augmentation practices with the unique characteristics
of event data, supporting the broader goal of adapting main-
stream techniques to event-based vision.

Augmentation Magnitude | Probability
Random Horizontal Flip - 0.5
Random Rotation +30° 0.6
Random Translation +0.5 0.6
Random Scale (0.5,1.5) 0.6
Random Shear +30° 0.6
Random Erasure - 0.4

Table 2. Standard augmentation chain adapted for event-based ob-
ject detection. Each transformation is applied sequentially with
the indicated probability to bridge mainstream vision techniques
with event data processing.

Table 2 shows our augmentation strategy, which lever-
ages standard transformations from the torchvision
package (0.17.2) [9]. Each augmentation is applied in-
dependently with its corresponding probability. When ap-
plied, its magnitude is randomly sampled from the specified
range. For Random Erasure, we preserve the object labels
while erasing image regions, maintaining detection super-
vision even in partially occluded scenarios.

Temporal Consistency in Augmentations. Our two-
stage adaptation approach requires different augmentation
strategies for each stage. For the base detector (RT-DETR)
training on individual frames, we apply augmentations in-
dependently to each frame following standard practice.

For the temporal adaptation stage, we carefully preserve
temporal consistency by applying identical geometric trans-
formations (flip, rotation, scale, translation, shear) across all
frames in a video clip while still allowing per-frame varia-
tions through random erasing. This ensures that the tem-
poral module learns meaningful motion patterns rather than



artificially induced movements from inconsistent augmen-
tations.

B. Supplementary Ablation Studies

This section provides additional ablation studies examin-
ing data augmentation strategies for event-based object de-
tection and spatial context size in our temporal adaptation
modules.

B.1. Impact of Augmentation on Base Detector Per-
formance

When applying mainstream object detectors to event data,
appropriate data augmentation becomes crucial for effec-
tive domain transfer. Our experiments show that without
a proper augmentation strategy, the base detector perfor-
mance is significantly compromised.

Model mAP (%) mAPso (%) mAP75 (%)
RT-DETR-B (ours) 47.6 76.3 49.5
RT-DETR-B (no augs) 38.6 62.8 39.8
RT-DETR-B (-Rotation) 46.8 74.4 48.8
RT-DETR-B (-Scale) 45.6 73.8 47.2
RT-DETR-B (-Translation) 45.0 72.6 46.2
RT-DETR-B (-Shear) 47.6 759 49.7
RT-DETR-B (-Erase) 46.8 75.1 48.7

Table 3. Impact of data augmentation techniques on base detector
performance for the Genl dataset.

Table 3 quantifies the contribution of different augmen-
tation techniques to our adaptation framework. Without
augmentations, RT-DETR-B performance drops by 9 mAP
points, highlighting their critical role in successful adapta-
tion. Among individual transformations, spatial manipula-
tions (translation and rescaling) provide the largest gains,
suggesting that scale and position invariance are partic-
ularly important when adapting image detectors to event
data. Random rotations and erasure techniques offer mod-
erate improvements, while shear transformations show min-
imal impact.

C. Spatial Context Size in Temporal Processing

Model mAP (%) mAPs5, (%) mAP75 (%)
EvRT-DETR-B (KS=1) 92.3 81.4 55.4
EvRT-DETR-B (KS=3) 52.7 82.0 56.0
EvRT-DETR-B (KS=5) 52.0 81.3 54.8

Table 4. Effect of ConvLSTM Kernel Size. Ablation study on
Genl dataset showing optimal temporal adaptation performance
with 3 x 3 kernels.

Previous work on event-based object detection with Con-
vLSTM models, specifically RVT [6], found optimal perfor-
mance with 1 x 1 ConvLSTM kernels (effectively pointwise

LSTMs). However, our adaptation approach shows differ-
ent optimal characteristics. As shown in Table 4, EVRT-
DETR achieves best performance with 3 x 3 kernels, sug-
gesting that spatial context is valuable when adapting frozen
RT-DETR features. This demonstrates how adaptation de-
sign choices may differ from specialized architectures built
from the ground up. Increasing to 5 x 5 kernels degrades
performance, suggesting that the additional parameters and
receptive field expansion do not provide beneficial informa-
tion for the task given the available training data.

D. Detailed YOLOX Results

To demonstrate that our findings extend beyond
transformer-based architectures, we evaluate our I2EvDet
framework on YOLOX [4], a CNN-based detector that has
been used in other EBC applications [6, 15].

Model mAP (%) mAPs, (%) mAP7; (%)
RT-DETR-B 47.6 76.3 495
YOLOX-T 36.0 59.9 36.3
YOLOX-S 37.0 61.1 37.6
YOLOX-L 43.1 69.6 44.7
YOLOX-X 434 69.7 44.7
EVRT-DETR-B | b52.7 82.0 56.0
EvYOLOX-T 424 71.9 428
EvYOLOX-S 43.6 73.1 44.4
EvYOLOX-L 46.6 75.4 48.2
EvYOLOX-X 47.8 75.7 50.0

Table 5. Performance comparison of RT-DETR and YOLOX vari-
ants with and without our [2EvDet temporal adaptation on the
Genl dataset. The consistent improvements across all architec-
tures and model sizes demonstrate the generalizability of our adap-
tation framework beyond transformer-based detectors to CNN-
based architectures.

We apply our two-stage training approach to multiple
YOLOX variants, using identical training configurations to
our RT-DETR experiments. Table 5 shows that YOLOX
models achieve respectable baseline performance on the
Genl dataset with YOLOX-X reaching 43.4 mAP, which
remains below RT-DETR-B’s 47.6 mAP.

The I2EvDet framework provides substantial improve-
ments across all YOLOX variants with gains ranging
from 4.4 to 6.4 mAP. These consistent improvements
demonstrate that temporal adaptation benefits extend across
different architectural paradigms, validating our frame-
work’s generalizability. ~ While transformer-based RT-
DETR achieves higher absolute performance than CNN-
based YOLOX variants, both architecture families benefit
significantly from our temporal adaptation approach.

These results confirm that the I2EvDet framework repre-
sents a general strategy for adapting image-based detectors



to temporal domains with broad applicability beyond trans-
former architectures. Testing with the most recent YOLO
iterations could be an interesting direction for future work
but is beyond the scope of this current study.

E. Adaptation Considerations for Higher Res-
olution Event Data (1Mpx)

This section examines specific adaptation factors for the
high-resolution 1Mpx dataset, focusing on resolution reduc-
tion techniques and temporal context length.

E.1. Resolution Adaptation Strategy

When adapting mainstream detectors to high-resolution
event data, appropriate downsampling techniques become
critical. For consistency with prior work, we reduce 1Mpx
frames from (720, 1280) to (360, 640), but our investigation
reveals that the interpolation method significantly impacts
adaptation performance.

Model mAP (%) mAPs5g (%) mAP75 (%)
RT-DETR-B (nearest) 42.3 71.8 42.3
RT-DETR-B (bilinear) 45.2 75.1 46.0
RT-DETR-B (bicubic) 43.1 722 433

Table 6. Impact of interpolation methods on base detector perfor-
mance for the 1Mpx dataset downsampling.

Table 6 depicts how the nearest-neighbor interpolation
substantially degrades RT-DETR performance, while bilin-
ear interpolation yields optimal results. Interestingly, de-
spite its theoretical advantages for natural images, bicubic
interpolation proves less effective for event data. These
findings align with observations from AEC [10] and high-
light the importance of selecting appropriate domain trans-
fer techniques when adapting mainstream vision models to
event data.

E.2. Temporal Context Length for Effective Adap-
tation

The temporal dimension represents a critical aspect of our
adaptation framework. While prior work like RVT [6] uses
5-frame clips for temporal training, our experiments indi-
cate that expanded temporal context benefits the adaptation
process.

Model mAP (%) mAPs (%) mAP7; (%)
EVRT-DETR (5 frames) 49.8 80.7 51.8
EVRT-DETR (10 frames) | 50.1 80.9 52.1

Table 7. Effect of temporal clip length on adaptation performance
for the 1Mpx dataset.

Table 7 demonstrates the improvement achieved by ex-
tending the temporal window to 10 frames during the adap-
tation phase. This finding implies that providing longer

temporal context during training allows the model to better
capture persistent object representations across the tempo-
ral dimension, which is particularly important for event data
where objects may be incompletely represented in shorter
time windows.

F. Comprehensive Evaluation Metrics

To provide complete experimental validation, this section
presents detailed performance metrics and additional vi-
sualizations of our models across both Genl and 1Mpx
datasets.

F.1. Detailed COCO Metrics

Table 8 provides comprehensive COCO evaluation metrics
including mean Average Precision (mAP) and mean Aver-
age Recall (mAR) at different Intersection over Union (IoU)
thresholds. I2EvDet’s temporal adaptation consistently im-
proves performance across all metrics and datasets, demon-
strating the robustness of our approach.

F.2. Additional Visualizations

Figure | presents qualitative detection results on diverse
1Mpx automotive scenarios across varied lighting condi-
tions and object configurations. Both RT-DETR and EvRT-
DETR demonstrate effective adaptation to event-based data
representations, with comparable performance on dynamic
scenes where objects generate sufficient event data through
motion.

Figure 2 illustrates the critical advantage of temporal
memory during motion transitions. As vehicles stop at an
intersection and event generation becomes sparse, frame-
based detection degrades significantly while our temporal
adaptation maintains consistent object localization by lever-
aging historical information. This sequence exemplifies the
fundamental challenge that motivates our I2EvDet frame-
work and demonstrates its effectiveness in real-world auto-
motive scenarios.
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