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1. Losses for SDF Network
RGB and Depth Loss.

The per-ray rendering losses for RGB and depth are de-
fined as follows:

ℓrrgb = ∥ctr − ĉtr∥, ℓrd = |dtr − d̂tr| (1)

where:
• ctr is the observed RGB value of ray r in the image.
• dtr is the observed depth value of ray r in the correspond-

ing depth map.
• ĉtr is the predicted RGB value for ray r.
• d̂tr is the predicted depth value for ray r obtained from

sampling.
SDF supervision. Following prior works [1, 10, 16], we ap-
proximate the ground truth signed distance function (SDF)
value using the distance to the observed depth along the ray
direction dt

r. Specifically, we define the bound as

br(x
t
i) = dtr − d(xt

i),

where dtr is the observed depth along ray r, and d(xt
i) rep-

resents the depth of the sampled point xt
i.

Using this bound, we divide the sampled points into two
disjoint sets:
• Near-surface points: Sr

tr = {xt
i | br(xt

i) ≤ ϵ}, where ϵ
is a truncation threshold that determines proximity to the
surface.

• Free-space points: Sr
fs = {xt

i | br(xt
i) > ϵ}, which are

points far from the surface.
For the set of near-surface points Sr

tr, we define the fol-
lowing SDF loss to encourage accurate SDF predictions
near the surface:

Lr
sdf =

1

|Sr
tr|

∑
xs∈Sr

tr

∣∣φ(xt
s)− br(x

t
s)
∣∣ , (2)

where φ(xt
s) is the predicted SDF value at point xt

s.
For the set of free-space points Sr

fs, we apply a free-
space loss similar to [10, 16] to encourage free-space pre-
diction and provide more direct supervision than the render-
ing terms in Eq. (1):

Lr
fs =

1

|Sr
fs|

∑
xs∈Sfs

max
(
0, e−αφ(xt

s) − 1, φ(xt
s)− br(x

t
s)
)
.

(3)
This loss applies:

• An exponential penalty for negative SDF values.
• A linear penalty for positive SDF values exceeding the

bound.

• No penalty when the SDF value is within the bound.
SDF regularization. To ensure valid SDF values, particu-
larly in regions without direct supervision, we incorporate
the Eikonal regularization term ℓeik, which promotes a uni-
form gradient norm for the SDF, encouraging it to grow
smoothly away from the surface [5, 10, 17]. Specifically,
for any query point x′t

i in the canonical space R3, the gra-
dient of the SDF with respect to the 3D point is encouraged
to have unit length:

Lr
eik =

1

|Sr
fs|

∑
xs∈Sfs

(
1− ∥∇φ(x′t

s )∥
)2

. (4)

Surface smoothness regularization. To enhance surface
smoothness, we enforce nearby points to have similar nor-
mals. Unlike [16], which samples uniformly within a grid,
we sample only surface points xt

s ∈ Ssurf , significantly
reducing computation. The smoothness loss is defined as:

Lsm =
1

R

∑
xs∈Ssurf

∥∇φ(xt
s)−∇φ(xt

s + δ)∥2, (5)

where xt
s is back-projected using depth maps, δ is a

small perturbation sampled from a Gaussian distribution
with standard deviation δstd, and R is the total number of
sampled rays.

The RGB rendering loss Lrgb measures the difference
between ground truth and predicted ray colors, while the
depth rendering loss Ld evaluates the depth error over valid
rays Rd. Both losses utilize the object mask Mr to focus on
the object of interest:

Lrgb =
1

|Rrgb|
∑

r∈Rrgb

M t
rℓ

r
rgb, (6)

Ld =
1

|Rd|
∑
r∈Rd

M t
rℓ

r
d. (7)

The SDF loss Lsdf is applied to points in the truncation
region Str:

Lsdf =
1

|Rd|

R∑
r=1

Lr
sdf . (8)

The free-space loss Lfs and Eikonal loss Leik are ap-
plied to the remaining points Sfs:

Lfs =
1

|Rd|

R∑
r=1

Lr
fs, (9)



16 21 22 25 31 34 35 49
53 80 84 86 89 94 96 102

111 222 323 382 402 427 438 546
581 592 620 640 700 754 795 796

Table 1. Scene IDs of 32 dynamic scenes from the NOTR [20]
Dataset which is a subset of the Waymo dataset used for evalua-
tion.

2011 09 26 drive 0005 (City) 2011 09 26 drive 0009 (City)
2011 09 26 drive 0011 (City) 2011 09 26 drive 0013 (City)
2011 09 26 drive 0014 (City) 2011 09 26 drive 0015 (Road)
2011 09 26 drive 0018 (City) 2011 09 26 drive 0022 (Residential)
2011 09 26 drive 0032 (Road) 2011 09 26 drive 0036 (Residential)
2011 09 26 drive 0056 (City) 2011 09 26 drive 0059 (City)
2011 09 26 drive 0060 (City) 2011 09 26 drive 0091 (City)

Table 2. KITTI raw sequences.

Leik =
1

|Rd|

R∑
r=1

Lr
eik. (10)

2. Dataset Details

We evaluate our method on the NOTR Dataset [? ], which
uses sequences from the Waymo Open Dataset [15]. The
scene IDs used in our experiments are listed in Table 1.

We also evaluate on the KITTI MOT sequences for
which 3D tracklets are available, as the other two base-
lines ([2, 3]) utilize these tracklets. The specific sequence
IDs used for this evaluation can be seen in Table 2

3. Runtime-Analysis

We show the runtime analysis for our method relative to
other methods in Tab. 3. Our method is competitive with
other methods both in terms of frame rate and training time.
This is because the background Gaussians take up the most
amount of time for the rendering operation.

Training for our method takes 3-5 hours for a single se-
quence. 60% of the time is typically taken to train the SDF
networks, 5% for initialization, with the remaining 35% by
rasterization approximately. At inference time, our method
runs at about 20 fps, which is similar to 4DGF [3] and
S3Gaussians [6].

Method Ours OmniRe S3Gaussians 4DGF StreetGS
[2] [6] [4] [19]

Train Time 3-5 3-5 8-10 3-5 1-2
Frame Rate 20 24 20 20 68

Table 3. Train time (in hrs) and frame rate (in fps) comparison for
our method.

3D BBox Type PSNR SSIM LPIPS

GT 31.34 0.945 0.026
Ours 30.55 0.931 0.028
[11] 30.67 0.943 0.035

Table 4. Comparison of GT Bounding Boxes (GT), bounding
boxes predicted from our tracking method (Ours) and from [11].

4. Tracking Evaluation
To evaluate the tracking off the combination of the depth
network UniDepth [12] and the point tracker CoTracker
V3 [7], we performing a tracking evaluation. To do so, we
compare the rendering results of using bounding boxes de-
rived from our tracking methodology, to that of [11] and the
ground truth on the KITTI MOT dataset. Remarkably the
combination of point tracking and depth yields only slightly
inferior results to that of GT bounding boxes while being al-
most identical to [11] which makes an assumption of object
rigidity.

5. Additional Results
5.1. Image and Depth Rendering Results
Figure 1 shows the results of rendered scenes for both depth
and images with moving objects for StreetGaussians, 4DGF
and our method without LiDAR inputs. Using point track-
ing and depth only, our network is able to preserve the de-
tails of moving objects in greater detail than that of methods
that make use of LiDAR.

5.2. Scene Editing Results
Figure 3 shows some scene editing results on different video
sequences. We are able to add and remove both rigid and
non-rigid objects from the scene. (b), (d) and (e) add a car,
pedestrian and car respectively. (a), (c) and (f) remove in-
stances.

5.3. Results on IPhone Dataset
As our method is not restricted to urban scene datasets but
can work on more casually captured datasets, we show qual-
itative results on the IPhone Dataset. We compare the re-
sults to Shape Of Motion [18], Dynamic Gaussian Mar-
bles [14].

6. Implementation Details
Initialization For the background model, we follow Om-
niRe [2], combining LiDAR points with 4 × 105 random
samples, which are divided into 2 × 105 near samples uni-
formly distributed by distance to the scene’s origin and
2 × 105 far samples uniformly distributed by inverse dis-
tance. To initialize the background, we filter out the Li-
DAR samples of dynamic objects. For canonicalization



Figure 1. Image and Depth Rendering Results for the NOTR Dataset Our method is rendered without LiDAR and is compared to
StreetGS and 4DGF. Even though the rendered images look similar, the depth achieved varies by mehod. Our method is able to capture the
details (feet of the pedestrian) and smoothness of moving objects (cars) with greater accuracy. StreetGS cannot model pedestrians, hence
it fails to render in the top strip. Citation numbers in the figure correspond to the main paper.

around dynamic objects, we use the depth map estimated
from UniDepth to calculate a bounding box around the ob-
ject. We use the 2D tracks generated from [7] to warp li-
dar and depth information from neighboring frames into the
initialization frame, typically chosen as the frame where the
object is initially detected via SAM2 [13].

Optimization Our 3DGS pipeline trains for 30, 000 iter-
ations with all scene nodes optimized jointly. The learn-

ing rate for Gaussian properties aligns with the default set-
tings of 3DGS [8]. Instead of using spherical harmonics,
we just use a constant color value for the Gaussians. For
the SDF Network, for the initialization, we train the net-
work for 2000 iterations. We train at the lowest-resolution
for the first 500 iterations, adding an additional resolution
every 200 iterations during the initialization. Subsequently,
we train the iteration a 1000 iterations every 2000 training



Figure 2. Qualitative Results on the IPhone Dataset We show the rendering results of Dynamic Gaussian Marbles [14], Shape of
Motion [18] and our method on 3 sequences of the IPhone Dataset. The bounding boxes highlight regions where our method generates a
more high-fidelity rendering of the scene. Citation numbers in the figure correspond to the main paper.

Figure 3. Scene Editing We show original and edited pairs of images, with the region of interest highlighted in a green bounding box.
(a) and (c) show the white car and van removed from the scene respectively. (b), (d) and (e) show duplicated cars and pedestrians in the
scenes. (f) shows the rendered scene after removing all moving objects and the sky. Videos for the edited scenes are in the supp. video.

iterations for the Gaussians. We train the SDF network us-
ing the Adam optimizer [9] with a learning rate 5×10−4. As

mentioned in the main paper training alternates between the
SDF network and the Gaussians and is done progressively.



We employ step-based weighting for the RGB, depth, and
regularization losses, prioritizing RGB and regularization
losses early in training and gradually reducing their weights
as training progresses. To begin with, we randomly sam-
ple an image and select 1024 rays per batch, sampling 128
points along each ray. Subsequently, we take feedback from
the Gaussian splatting to direct the ray sampling improving
upon random ray sampling. Overall optimization time for
our is around 3-4 hours per scene.
Hyper-Parameters:
• SDF Guidance for Gaussians τs = 0.01, τn = 0.02,
τpr=0.02

• Gaussian Guidance for SDFs: γ = 3
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