ConstStyle: Robust Domain Generalization with Unified Style Transformation

Supplementary Material

A. Details of the Training Process

Details of unified domain determination algorithm, training
and inference processes are presented in Algorithms 1, 2
and 3, respectively.

B. Proofs
B.1. Proof of Lemma 1.

Let us start with LS*, we have:
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Similarly, we have:
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By subtracting 8 from 7, we obtain:
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Using the Taylor approximation for a function with two
variables, we derive:
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Let D,,(T,Sk) denote the distance between means of
the unified instance style 7 and seen instance style Sy,

' Y)

while D, (T,Sk) represents the distance between stan-
dard deviations. Let ||v|| denote the L2-norm of vector
v. Assume f is a [-Lipschitz function, we can suppose

SUPges,, IV o 1| = B SUPgzes, Vo, fll = Bo, we have:
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Let 8 = max(f,, 85). then:

LS5 — LS < B x (Du(T,8k) + Do (T, S) (1)

B.2. Proof of Theorem 1

According to B.1, for the seen domains {Sy}2_,, the total
empirical loss across /N seen domains is bounded as fol-
lows:
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It can be observed that the upper bound of this loss de-
pends on the total distance from the unified domain to N
seen domains Sj. Therefore, to minimize the loss over the
seen domains, we aim to reduce the distance between the
unified domain 7 and N seen domains Si. Consequently,
the unified domain style N7 = (u®', £7T) is the barycenter
of N seen domain styles.

B.3. Proof of Theorem 2

The loss function of the model trained on seen domains,
obtained by ConstStyle, and test on unseen domain is given
by:



Algorithm 1: ConstStyle Training Process

1 Input: Seen data S = {(x,y)}, Model w = ((0¢(6(.)), the update interval -y, the number of epochs E, the learning
rate 77, and the number of clusters N';

2 Output: Optimal model w*, the final unified domain N'7;

3 Algorithm:

4 for epoch < E do

5 e+ 0 // Set of style features
6 for z € S do
7 if epoch < £ then
8 ze = 05(x);
9 | () = C(0f(22));
10 else
11 zp = 05(2);
12 es ~NT; // sample style features
13 s, 05 = split(es);
14 2T = o, % % + W 3 // project to the unified domain
15 | plx) = C(0p(21))s
16 l= Zcec yc~10g(pc(x));
17 w=w—nVul; // Update model
18 if epoch % v == 0 then

1 H w 1 H w .
19 /,L:EC = HW Z}L:l Zw:l chJL,w7o—$c = \/HW Z}L:l Zw:l(zzc,h,w - Il’ch)z’
20 €, = concat(fiz, 0z) ; // extract style features
21 e=cUey; // store style features
22 if epoch % ~ == 0 then
23 N (T, ¥T) =Unified Domain Determination(g, N');
24 NT Nl 5T // get unified domain style
25 w* = w;

26 return w*, N7

Algorithm 2: Unified Domain Determination Similarly, We have:

1 Input: Set of all style features € = {e,|x € S},
Number of clusters N';

2 Output: Unified Domain Style V' (¢, ©7); LS = 5 Z 1w (), )]
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Algorithm 3: ConstStyle Inference Process

1 Input: Unseen data U = {u|u ~ U}, Optimal
model w*, Unified domain N'7T;

Output: Prediction set L;;

Algorithm:

Lz,[ = V);

for uw € U do

2y = 05(u);

ul ot = split(e?);
2zl = (a. au—i-(l—a).UT).%—i—(a.,uu—k
(1—a).u”);
p(u) = C(05(2)):

10 Yy = arg max(softmam(p(u));

11 Lu = Lu U Yus
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By applying the Taylor approximation for three variables,
we obtain:
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Denote ||v|| as the L2-norm of tensor v. Suppose that

sup,es([Vur fI [[Vor fI]) = Band sup,c s Vieoosa f =
&, then we have:

- LST

SCI DY

ceC  u€U.,x€S.

(e x (B [ln” — pall

2y — Hu Rx — Mz
+Bxlo" —oull) +& x| - 1)

Ou o
1
< a8 g S =l + 110" - oul)
ueU
1 Zy — 2y —
tex o S|P o= )
|| Oy o
ueU, xS

Observed that, %, Ze—be ~ N(0,I), where I is the
identity matrix size C' x H x W, where C, H, W are the
channel, height, and width dimensions of z,. When the car-
dinality of seen domains &, unseen domain I/ is sufficiently
large, we can approximate:

1 Zu — Mu
w2 175

ueU,zeS

b = E[lU -], (8)

where U and X are two random multivariate variables
over REXHXW drawn from standard Gaussian distribution,
U, X ~ N(0,I). We have:
VI[IU = X1] (E[U — X])*
X] < VE[IU - X[)?] = /Tr(2I)
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Let D,(T,U) and D,(T,U) be the distance between
mean and standard deviation of unified domain 7" and un-
seen domain U, respectively. From Equation (17), we ob-
tain:

I~ LT <ax B x (DuU,T)+Dy(UU, T))
+ & x/2.Tr(I)

C. Experiment Setup

Image classification: We train a ResNetl8 pretrained on
ImageNet for 200 epochs with learning rate of 0.001. Batch
size is set to 32 for PACS dataset with 3 integrated Con-
stStyle layers, and 128 with 1 ConstStyle layer for Digit5
dataset.

Image Corruption: We use WideResNet with a single
ConstStyle layer as a backbone, training for 200 epochs
with a learning rate of 0.05 and batch size of 512.

Instance Retrieval: We train a model with ResNet50 pre-
trained on ImageNet as the backbone for 80 epochs with a
learning rate of 0.0035. We integrate 3 ConstStyle layers



Method Venue MMM M.S M.SY MU  MMS MMSY MMU S.SY S.U SY.U | Avg
ERM - 80.22 8277 9234 9746 7160 7483 71.67 52.49 7770 87.86 | 79.49
Crossgrad | ICLR2018 | 79.24 82.95 92.01 97.68 7664 7501 73.00 50.77 78.77 848 | 77.02
Mixup ICLR2018 | 7592 84.88 90.81 9675 7587 7071 67.49 44.03 80.51 82.58 | 76.95
Cutmix ICCV 2019 | 7486 85.16 91.61 97.02 7178 70.04 68.87 45.51 80.75 8559 | 77.71
EFDMix | CVPR2022 | 7629 82.87 9253 9752 7165 7614 73.33 52.34 78.57 85.87 | 78.88
RIDG ICCV 2023 | 7975 84.48 9197 9723 718 7377 71.05 50.73 79.74 8633 | 7928
MixStyle | ICLR2021 | 77.96 72.69 8337 8682 7509 6218 68.15 41.53 58.5 71.88 | 69.81
DSU ICLR2022 | 7877 83.83 92.1 97.81 7853 7478 71.89 53.66 7814 87.62 | 79.71
csu WACV 2024 |  78.64 84.29 9272 9739 7727 7561 72.67 57.28 7856 88.08 | 80.25
ConstStyle Ours 80.22 84.69 9292 9733 7873 7627 74.19 57.58 8029 8824 | 81.04
Method |  Venue | MMM,S MMMSY MMMU MSSY MSU MSYU MMSSY MMSU MMSYU SSYU | Avg
ERM - 80.12 76.39 71.41 61.89 8347 9107 44.49 71.63 7687 4847 | 7118
Crossgrad | ICLR2018 | 79.59 76.32 71.31 6037 8321 9147 36.57 7171 7426 46.55 | 70.34
Mixup ICLR2018 | 7835 74.19 69.51 5722 8578 9116 3445 77.11 7134 4129 | 68.04
Cutmix ICCV 2019 | 79.82 73.12 6892 5828 8564 9132 32.52 78.3 7257 3992 | 68.04
EFDMix | CVPR2022 | 8038 76.04 70.13 6348 8362  91.96 43.46 77.61 7394 5043 | 7110
RIDG ICCV 2023 | 80.51 74.71 70.45 6176 8478 9141 35.02 78.28 7574 4553 | 69.81
MixStyle | ICLR2021 | 7891 74.97 61.48 5795 7144 8143 42.92 71.44 62.3 4099 | 6438
DSU ICLR2022 | 80.71 76.25 7054 6235 8325 9147 42.87 77.84 7629 4831 | 70.98
csu WACV 2024 | 80.63 76.26 69.50  64.68 8509 9153 47.31 77.64 75.61 5273 | 72.09
ConstStyle Ours 80.32 77.93 7089 64.68 8488 9210 48.88 79.08 7727 5355 | 7295

Table 7. Multiple unseen domain generalization (2 and 3 unseen domains) on Digits5 dataset. Abbrevations: (M: MNIST, MM: MNISTM,
S: SVHN, SY: SYN, U: USPS). The best result is colored purple and the second best result is colored blue.
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Figure 7. Style statistics of ERM and ConstStyle.

Method | Dataset
\ PACS Digit5
ConstStyle w/ Pretrained features | 86.31  76.61
ConstStyle w/ Domain label 86.73  86.37
ConstStyle 86.77 86.88

Table 8. Different variants of ConstStyle.

into the model.

Across all experiment scenarios, the number of clusters is
fixed to 4. All methods are optimized using SGD optimizer.
Optimal hyperparameters are selected based on the perfor-
mance on the validation dataset.

D. Additional Results
D.1. Multiple Unseen Domains on Digit5 dataset

We perform additional experiment with multiple unseen do-
mains on the Digit5 dataset. The results are shown in Table

# of clusters ‘ 1 2 3 4 5
PACS 86.07 86.51 86.61 86.77 86.61
Digit5 85,80 85,60 85,54 86.88 85.93

Table 9. Impacts of the number of clusters.

Batchsize‘ 8 16 32 64 128 256
Accuracy ‘ 8543 8622 86.77 8633 8591 85.10

Table 10. Impacts of the batch size on accuracy (PACS dataset).

7. It can be observed that ConstStyle achieves the best per-
formance in most of the scenarios, and obtains the highest
average accuracy.

E. Ablation Studies

In this section, we conduct a more in-depth analysis con-
cerning the impacts hyperparameters in ConstStyle’s, which
is the number of clusters used during the unified domain de-
termination phase, we additionally perform experiments to
explore the influence of training batch size and impact of «
in the inference process.

E.1. In-depth analysis of ConstStyle

We first conduct additional experiments to further analyze
the behaviors of ConstStyle. Figure 7 illustrates the style
statistics for both seen and unseen domains, demonstrating
that ConstStyle effectively aligns training and test samples
within a unified domain, thereby enhancing performance
under distribution shift. Additionally, we evaluate Const-



a ‘ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

PACS | 86.00 85.08 8576 86.34 86.33 86.34 86.77 86.46 8622 86.03 85.86
Digit5 | 85.96 85.62 8577 8591 8595 86.88 86.01 8599 8598 86.01 85.96

Data size ‘32892 65787 98680 131575

Average training time per epoch (s) ‘ 2492 5684 8573 10764

Table 11. Impact of o to the model performance on different
datasets.

Style with two alternative approaches: 1. Clustering us-
ing domain label and 2. Utilizing pretrained style statis-
tics with results shown in Table 8. We can observe that
while domain labels can produce good performance, they
are not always optimal, as some samples have style statistics
belonging to other domains; thus, clustering using GMM
can form appropriate domain clusters, yielding better per-
formance. Furthermore, using pretrained features for clus-
tering can achieve comparable results if style features are
previously learned by the pretrained model, as shown in the
PACS dataset in Table 8. However, if the pretrained model
has not learned style features, relying on them can signif-
icantly degrade ConstStyle’s accuracy, as observed in the
Digit5 dataset.

E.2. Impacts of the Number of Clusters

We first investigate the impact of the number of clusters dur-
ing the clustering phase, ranging from one to five. Figure 9
demonstrates that ConstStyle performs consistently across
domains, regardless of the number of clusters. This con-
sistency demonstrates ConstStyle’s robustness, as the major
goal is to construct a single domain by averaging all of the
clusters in the visible domains.

E.3. Impacts of the Batch Size

In this section, we investigate the impacts of the batch size
on ConstStyle’s performance. Experiments are conducted
with batch size ranging from 8 to 256, and the results are
presented in Table 10. The results suggest that using either
very small or very large batch sizes can lead to suboptimal
performance, as too few or too many style modifications
may disrupt learning stability. The optimal strategy is to
use a moderate batch size (about 32), ensuring balanced and
steady learning for the model.

E.4. Impacts of Partial Projection

We study the impacts of o on the performance of the pro-
posed method by varying this parameter from 0 to 1, with
the results presented in Table 11. It is evident that the
impact of « varies significantly across different values,
highlighting its important role in achieving optimal perfor-
mance. When an appropriate value of « is selected, overall
performance can improve by up to 0.56% for PACS dataset
and up to 0.87% for Digit5 dataset, compared to when no «
value is used. This results also highlights the effects of our
proposed partial style alignment algorithm (Section 3.5).

Table 12. Scalability of ConstStyle with different number of train-
ing data size.

E.S. Scalability against larger datasets

ConstStyle has three components: style statistics distribu-
tion estimation, unified style determination, and style alig-
ment. The computational complexity of all three compo-
nents scales linearly with the training data size. As a result,
Constlyle is inherently scalable to large datasets. This scal-
ability is also empirically demonstrated in Table 12, which
reports the average training time per epoch when varying
the training data size.
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