Supplementary materials for Head2Body: Body pose generation from
Multi-sensory Head-mounted Inputs

Minh Tran'? Hongda Mao?, Qingshuang Chen?, Yelin Kim?
'Department of Computer Science, University of Southern California, Los Angeles, CA, USA
2 Amazon, Santa Cruz, CA, USA

minhntra@usc.edu

1. Head-IMU pretraining

The IMU encoder in our framework is pre-trained using
a self-supervised approach (BestRQ) [1] on a large-scale
dataset of head-IMU signals from the Ego4D dataset [2],
consisting of over 1700 hours of unlabeled motion data. The
goal of pre-training is to capture temporal dynamics and
motion patterns in head-IMU signals, enabling the encoder
to generalize well across downstream tasks with limited
labeled data.

Data Preparation The IMU signals are down-sampled from
800 Hz to 200 Hz, and normalized to ensure consistency
across devices. Each input sample consists of 4-second win-
dows of 6-DoF motion data, capturing both accelerometer
and gyroscope readings. We do not apply any augmentation
to the IMU signals.

Architecture and Pre-Training Objective The IMU en-
coder is based on a Conformer model [3] with six layers,
each comprising eight attention heads and a hidden dimen-
sion of 512 units. To process the raw 200 Hz IMU signals,
we developed a custom feature extractor that downsamples
the input to 25 Hz while producing feature representations
compatible with the encoder’s hidden size. The feature ex-
tractor consists of a GroupNorm layer, followed by three 1D
convolutional layers, and a final GroupNorm layer. The pre-
training objective employs a masked motion prediction strat-
egy, where 15% of the input sequences are randomly selected
for masking, along with their subsequent four frames, result-
ing in approximately 60% of the input data being masked. To
produce the pseudo-labels for SSL, we utilize a Random VQ
module comprising 8192 codebooks, each with a codebook
size of 16. The model is trained to reconstruct the missing
segments using contextual information from the unmasked
portions of the sequence, as detailed in Section 3.1.
Training Configuration Pre-training is conducted on 8
L40S GPUs with a batch size of 16 for 400K epochs. The
learning rate is set at 8e~*, using a linear warmup for 25K
steps, and weight decay is set to 0.05. Gradient clipping with

*This work was done during an internship at Amazon.

AMASS [10]  Kinpoly [9]  Exo-ego4d [2]
# samples 54K 266 1.5K
total duration 60hr 1.3hr 13hr
modality Hp Hp+V+I Hp+V+I
environment | indoor/outdoor indoor indoor/outdoor
annotations SMPL [8] SMPL [8] 3D COCO [7]

Table 1. Details of the datasets used in this work.

a maximum norm of 0.5 is applied to ensure stable training.
The total pre-training process takes approximately 3 days.

2. Implementation Details

All models are trained using the AdamW optimizer with a
learning rate of 1e~* and a weight decay of 1e~°. Training
spans 100 epochs with a batch size of 32. The vision encoder
utilizes a ResNet-50 [4] backbone pre-trained on ImageNet
and fine-tuned during training. For the Transformer model
responsible for discrete motion token prediction, we employ
a 6-layer architecture (3 in encoder and 3 in decoder) with
8 attention heads and a hidden dimension of 512 units. Po-
sitional encodings are added to the input tokens to preserve
temporal ordering. The Vector Quantization (VQ) module
comprises 512 codebooks, each containing 512 entries. Dur-
ing training, the discrete motion tokens are predicted using
teacher-forcing, while inference employs an auto-regressive
decoding strategy. To process egocentric video frames, we
use a frame resolution of 512 x 512, downscaled from the
original resolution using bicubic interpolation. Data aug-
mentations are not applied. For IMU data integration, input
sequences are synchronized with video frames at 25 Hz.

3. Datasets

The datasets used in this work vary in size, modalities, and
environmental diversity, as summarized in Table 1. For the
splittings, we follow the setup provided in EgoEgo [6]. For
the EgoExo04D dataset, we follow the official Body Pose
estimation challenging training and evaluation settings.



Time (ms) GFLOPS
Egoego [6] 651 653
VQ-Poser (ours) 96.4 9.15

Table 2. Performance analysis of Body Pose Generation module
for processing 1-second (30 frames) of data, with times reported in
milliseconds (ms).

Time (ms) GFLOPS
NEXT-Chat 2.34E+04  1.46E+06
HeadNet 83.5 1.02
IMU-encoder 1.54 2.48
Image-encoder 35.0 109

Table 3. Performance analysis of Feature Extraction modules for
processing 1-second (30 frames) of data, with times reported in
milliseconds (ms).

¢ AMASS is a large-scale dataset comprising 54,000 sam-
ples, with a total duration of approximately 60 hours. It
focuses on head pose (Hp) data captured in various envi-
ronments. Ground-truth annotations are provided in the
form of SMPL body parameters, covering a wide range of
pose types. Because the dataset does not come with real
head-IMU data, we extract the IMU information following
the pipeline in IMUGPT [5].

* KinPoly consists of 266 samples with a total duration of
1.3 hours. This dataset includes head pose (Hp), vision
(V), and IMU (I) data captured in indoor settings. The
annotations are provided using SMPL body parameters
and are specific to five defined actions.

* Exo0-Ego4D contains 1,500 samples spanning approxi-
mately 13 hours of recording. Like KinPoly, it features
head pose, vision, and IMU data (Hp+V+I), but the en-
vironment varies across different scenarios. Annotations
include 3D body poses, and the dataset covers procedural
(e.g., cooking) and physical (e.g., basketball) pose types.

This diversity in datasets enables comprehensive evaluation

of our approach across different modalities, environments,

and pose types.

4. Runtime Analysis

Tables 2 and 3 present a comprehensive analysis of the com-
putational efficiency of various components in our frame-
work, including the base models and feature extraction (FE)
modules. The performance is evaluated in terms of frames
per second (FPS) and giga floating-point operations per sec-
ond (GFLOPS) for processing 1-second (30 frames) of input
data. The results highlight that VQ-Poser effectively bal-
ances computational efficiency and performance, demonstrat-
ing superior resource usage compared to the diffusion-based
EgoEgo model [6]. However, a significant performance
bottleneck is observed in the vision-language segmentation
mask extraction process, which imposes a substantial compu-

tational burden. This bottleneck overshadows the inference
efficiency gains introduced by VQ-Poser.
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