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Supplementary Material

1. Characteristics of the Weight Functions

The parameters o = [o, u] of v°(p; ), for o = 1,2,3,4,
are linearly updated over the training epochs, following [2],
as shown below:
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where t = 1,2,...,T denotes the current training epoch,

T is the total number of training epochs, 1(*) and ¢(?) are
initial values, 1(?), 0(©, (M) o(T) are hyperparameters.

Recall that v!(p; ) = 1 is used to handle given single-
positive labels. In contrast, v?(p; a) = exp (—%) is
used for undefined labels, i.e., labels that are neither ob-
served in the dataset nor recognized by the pseudo-labeling
method M.

The formulation of v?(p; o) depends on the output con-
fidence p. When an undefined label has a p value close to
1, the instance is likely a false negative or an outlier; thus,
its weight should be reduced. Similarly, in cases of imbal-
ance between positive and negative samples, the weight of
easy samples should be reduced appropriately. For unde-
fined labels with p close to O, the instance is likely easy,
so its weight should be small. Conversely, if p is near g,
the weight should be higher due to the potential presence of
semi-hard examples.

As negative pseudo-labels are derived from undefined la-
bels, we use the same weight function, v*(p; a) = v?(p; a).
For positive pseudo-labels, we use the weight function

04(p; ) = min (max (1 — v3(p; a), /\1) 7)\2) ,
which operates in reverse of v3(p; ).

2. Proof of theorem 4.1

To prove Theorem 4.1, we demonstrate that under the con-
ditions max(C(M),|m’ — m|) — 0, the proposed GPR
Loss reduces to the GR Loss.

Definitions Recap:
N c
« C(M) = exp (L0 S0 Ty, =1 108 Pllai = 1zn, M)).
e m = % ZnN; 210:1 H[ym:u (validation set average
positives).

o M= % Zﬁ;l chzl Dn,; (predicted average positives).
Key Observations:

1. Regularization Term R:

As |m' —m| — 0and m' — E,,s (Remark 2), m —
E,,s. Hence, R — 0.

2. Pseudo-Label Confidence C(M): C(M) — 0 implies
the pseudo-labeling method M is unconfident. This oc-
curs when P(l,,; = 1|z,, M) — 0 for true positives
(Yn,i = 1), forcing ,, ; = 0O for all n,% (undefined la-
bels).

Under C(M) — 0 and [, ; = O:

* Loss Terms £7.5": Since I,, ; = 0, the terms L3 ; (nega-
tive pseudo-labels) and Lfm; (positive pseudo-labels) are
inactive. Only £, ; (observed positives) and L2 ; (As-
sume Negative) remain, matching the GR Loss terms

old
n,i*

* Weight Terms v"*"(p,, ;; «): Similarly, v"*% collapses to
v°4, as only the original Assume Negative labels (9, ;)
contribute.

With R — 0 and C(M) — 0, the GPR Loss in Eq. (4)
simplifies to the GR Loss in Eq. (3) as follow:
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3. False Negative Pseudo-label Estimator

The formulation of l%(p; B) relies on two assumptions: ini-
tially, l%(p; B) behaves almost like a constant function, but it
gradually transforms into a monotonically increasing func-
tion towards the final training stage [2]. This function is
modeled using a logistic function as follows:

R 1
k(p; B) = ;
(p; 5) 1+exp{—(w-p+b)}
where § = [w,b]. To ensure l%(p; B3) meets the required

properties, both w and b are assumed to increase linearly
with training epochs, expressed as:
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where w(© and b(®) are initial values, w(®), 5, (™) p(1)
are hyperparameters.



4. Graph Convolutional Network

In this section, we introduce the process to obtain the adja-
cent matrix A*, following [5].

From a set of C' classes, label features are derived by
feeding a prompt template, “A photo of a {class}”, into
the CLIP text encoder, resulting in label features Zz; for
each class i-th. The correlation prior among labels, A =
(aij)cxc, is computed as:

Q5 = SiIIl(Zi7 Zj)

where sim(+,-) is the cosine similarity. For each row a;,
the top u elements are selected and the rest are set to zero,
resulting in a sparse matrix, A’ = (a;j)CXc:

Q5
aj; =4 7
0,

We mitigate over-smoothness of graph representation by
adjusting the sparse graph A’ as follows:

j € TopK(a;,u),
j ¢ TopK(a;,u).

e ’ o .
STl T ifi #£
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where e is a hyper-parameter that determines weights as-
signed to a node itself and its neighboring nodes. The label
correspondence graph G is derived as:

o — ]l[aij 7é 0] exp(dij/T’)
& Zj ﬂ[dij 7& 0] exp(&ij /T')

where 7/ controls distribution smoothness. The adjacency
matrix of GG is denoted as A* = (afj)0xc-

The importance of each node is emphasized in A*, with
weights assigned to other nodes based on their relationships,
thus encoding label correspondence in the structured graph
A*.

For a GCN with L layers, the weight matrix W, with a
shape of di, X doy, is typically initialized using a uniform
distribution with bounds determined by the size of the out-
put features:

. 1 1
W; ~ Uniform < Nz m) .

This GCN will be used to add controlled noise based on
label-to-label correspondence into the CLIP text encoder of
DAMP. We conjecture that this can help DAMP remove
pseudo-labels with low to medium confidence, retaining
only the pseudo-labels with high confidence, without re-
quiring additional training efforts.

5. Datasets

In this study, the proposed method is evaluated using en-
vironmental experiments similar to those described in [2,
4, 8, 9] across four standard benchmark datasets: PASCAL
VOC 2012 (VOC), MS-COCO 2014 (COCO), NUS-WIDE
(NUS), and CUB-200-2011 (CUB). The aim is to assess the
effectiveness of various Single-Positive Multi-Label Learn-
ing (SPML) methods. To do this, fully labeled multi-label
image datasets are initially used and then systematically re-
duced by discarding some annotations.

To simulate single-positive training data, one positive la-
bel is randomly chosen to be retained for each training ex-
ample. This simulation is conducted once per dataset, en-
suring that the same label set is consistently used for all
comparisons within that dataset. Thus, every image in a
batch retains the same single positive label throughout the
process. Twenty percent of the training set for each dataset
is set aside for validation purposes. Both the validation and
test sets are fully labeled. VOCI12 consists of 5,717 train-
ing images and 20 classes, with results reported on the offi-
cial validation set containing 5,823 images. COCO includes
82,081 training images and 80 classes, with results also re-
ported on the official validation set of 40,137 images.

The complete NUS dataset is not available online, ne-
cessitating a re-scraping from Flickr. Consequently, not all
original images were obtained. A total of 126,034 train-
ing images and 84,226 test images were collected, cover-
ing 81 classes according to [4]. The training and test sets
were combined, with 150,000 images randomly selected
for training and the remaining 60,260 images used for test-
ing. The CUB dataset comprises 5,994 training images and
5,794 test images. Each CUB image is annotated with a
vector indicating the presence or absence of 312 binary at-
tributes. Although subsets of these attributes are known to
be mutually exclusive, this information is not utilized in this
study. Additional statistics on the datasets are provided in
Table 1.

Table 1. Data statistics on four benchmark datasets.

Statistics VOC COCO NUS CUB
# Classes 20 80 81 312
Training | 4,574 65,665 120,000 4,795

# Images Validation | 1,143 16,416 30,000 1,199
Test | 5823 40,137 60260 5794
L Positive 1.5 2.9 1.9 314
#Labels per training image | \oo0ive | 185 77.1 791 280.6

6. DAMP

In this section, we introduce a Dynamic Augmented Multi-
focus Pseudo-labeling (DAMP) approach for SPML.



6.1. CLIP Inference

As introduced in [12], given an image input x and the i-
th class from a set of C' classes, the corresponding visual
embedding and textual embedding are h = E,(z) € RE
and t; = E;(P;) € RE, respectively. Here, E, and E; are
the image and text encoders of CLIP model with dimension
K, and P; is a predefined prompt for class ¢, such as “a
photo of a {class}”. The cosine similarity score §; between
the i-th class and image x is computed as follows:

h't;
Gi=— (1)
TR
where || - || denotes the Euclidean norm. These scores are
normalized with a temperature parameter 7 as follows:

Zic:1 €xp (31/7')

We denote S = {s1,S2,...,Sc} as the probability dis-
tribution for the input x across C classes.

6.2. Strengthening CLIP Inference with Noise

Several works, including [7, 10, 13], have studied enhanc-
ing model performance during fine-tuning by adding con-
trolled noise to model embeddings. Additionally, in [3, 5],
label-to-label relationships are presented by GCN. Inspired
by this, we propose adding controlled label-to-label cor-
respondence noise to the text embeddings of the CLIP
model, defined as t;, = G(E(P;)) + E¢(P;)), where G(-)
is a GCN with L layers, updated as follows: H;i; =
LeakyReLU(A*H;W;), forl € [0, L) and Hy = {E(P;) |
1 <4 < C}. The graph G remains frozen during training,
and weights W} are initialized from a uniform distribution.
The adjacency matrix A* is derived from cosine similarity
scores between the text embeddings of the classes produced
by the CLIP text encoder. Further implementation details
are in the supplementary materials.

6.3. Dynamic Augmented Multi-focus Pseudo-
labeling

Augmentor. Let I be a given image of size H x W. We
first divide the image I into smaller patches {P,}.—12.. r
using a ¢ X g grid, where g is the grid size and R = ¢
is the total number of patches. Each patch has nominal di-
mensions of % X %, and its size is increased by a ran-
dom ratio r, creating an overlap between adjacent patches.
We then process the image and its patches using a trans-
formation pipeline T(-), which includes standard prepro-
cessing and weakly data augmentation techniques to gen-
erate various views for CLIP as follows: z9°%%! = T(I),
xéocal — T(PZ)

Global and local views. Following Secs. 6.1 and 6.2,
from z9'°%@ and z!°°®, we obtain the probability distribu-
. lobal __ global _global global local __
tlolnsAlS*gl = {Sll 1,52 yee SO }?ndsz. =
{s;j‘{a y 8050 80 }, respectively. For simplicity, we

use the same temperature parameter 7 for both the image
and its patches.

Local threshold based on single positives. Let ¢ be the
given single positive label, according to the SPML set-
ting in ??, for the image I. The local threshold ¢!o¢%,
which defines the patches to be trusted, is adjusted based
on ¢'ocal = min(s2'°"* 1), where v is the general local
threshold, set as a hyperparameter. In some cases, if v is set
too high to recognize hard positives, we should consider the
scores above sgl(’b“l, as these can be meaningful, since ¢ is

one of the true labels of the global view.

Aggregator. From the distributions {S},_; » g, we
aggregate a unified local distribution S*# following [1].

For each class ¢, we compute w, = max,—;, g s°% and
local

Ve =min,_ . g so%, defining the aggregation score s¢*

for class c as

,,,,,

Sigg = ]]_[wczcloca]]wc + ]l[wc<§local]wc’

where 1 is the indicator function. This yields S*¢ =
{158, 555, ..., &%}, the soft aggregation vector for each

input image.

Positive pseudo-labels. To extract reliable positive
pseudo-labels, we integrate both global and aggregated lo-
cal similarities into S/l = 1 (§global 4 Gags) et
Q = {l},l5,--- i} be the pseudo labels of the image
I. We convert the soft similarity scores S/ into hard
pseudo-labels as follows:

S(]:inal c TOpK(Sfinal, ]{3) & S{inal > Cglobal

otherwise,

where (9'°b is the global threshold for high-confidence
positive pseudo-labels, set as a hyperparameter, and & limits
the number of positive pseudo-labels.

Negative pseudo-labels. To identify potential negative
pseudo-labels we compute average similarity scores as:

R
§avg — } Sglobal + l Z Slocal )
2 Rz:l :

We use S™¢ to refine @’ by assigning negative
pseudo-labels, producing the final pseudo-labels (Q =
{li,la,--- ,lc}. A class c is designated as a negative
pseudo-label if its score s¢ © falls within the lowest Anee%



of values in S*8. Assuming a potential negative pseudo-
label has low scores in both image I and every patch P,
according to the VLM, we define the assignment as:

=1, e < 0a,,(5M)
le = , . ¢
o, otherwise

where 0, (5%¢) denotes the Ae,-th-percentile of S,
serving as the threshold to identify the lowest Ape % of val-
ues in S*'8 as negative pseudo-labels.

6.4. Performance

As shown in Tab. 2, the difference in precision on pos-
itive pseudo-labels generated by DAMP across epochs is
generally small, demonstrating the stability of the training
process when applying the randomization-based pseudo-
labeling approach in our proposed method.

Table 2. DAMP performance reported in average precision across
epochs.

Metrics [ voc COCO NUS CUB

Average Precision ‘ 65.13 £0.53 84.79+£0.05 37.09+0.08 19.07 £0.02

7. Hyperparameters Settings

The hyperparameters, including the temperature 7 that con-
trols the softmax prediction scores, the range of weights
for the positive pseudo-label loss (A1, A2), the top k high-
est scores used to extract positive pseudo-labels, the global
threshold ¢9'°%%! the general local threshold v, and the loss
coefficients, are described in Table 3.

Table 3. The hyperparameters of AEVLP conducted on backbone
ResNet-50 [6]

Hyperparameters vVOC COCO NUS CUB
(w©, p(0) (0,-2) 0,-2) 0, -2) (0, -4)
™), b(T)) 2,-2) (10,-8)  (10,-8)  (10,-8)
(u®, 5(0)) 0.5,2) (05,2 (05,2 (05,2
(™), (1) (0.8,0.5) (0.8,0.5) (0.8,0.5) (0.8,0.5)
v 0.1 0.3 0.3 0.005
k 3 3 3 32
(9lobal 0.5 0.5 0.6 0.005
T 0.01 0.01 0.01 0.1
@ 1 1 1 1
a2 0.01 0.01 0.01 0.01
a3 0.9 0.9 0.9 0.9
(A, A2) 0.4,0.7) (0.5,0.7) (0.5,0.7) (0.2,0.8)
n 0.05 0.001 0.001 0.01

8. Visualization

The dynamic patching mechanism of the Augmentor mod-
ule, which helps the CLIP model attend to more details in

the input images, is visualized in Fig. 1. We also provide
our output predictions on the COCO test dataset to demon-
strate the effectiveness of our method in Fig. 2.
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Cake 0.99

Pizza 0.91
Dining table 0.78 Chair 0.86
Wine glass 0.58 Person 0.69
Fork  0.25 Dining table 0.63
Bowl 0.11 Fork 0.08
Knife| 0.07 Knife 0.08
Spoon 0.05 Motorcycle 0.04
Cup 0.04 Clock 0.02
Broccoli 0.02 Spoon 0.02
Sandwich|0.02 Bowl 0.02
Motorcycle 1.00 Boat 1.00
Person 0.99 . Person 0.97
Car 0.80 | Bird[0.05
Bicycle 0.05 Dog 0.03
Bus 0.02 Skis 0.01
Book|0.01 Bench 0.01
Parking meter 0.01 Tv 0.01
Scissors 0.01 Bed 0.01
Stop sign 0.01 Chair/0.01
Kite 0.01 Bottle 0.01
Toilet 1.00 Person 0.99
Sink 1.00 Snowboard 0.97
Bottle 0.04 Skis 0.95
Toothbrush 0.02 Backpack 0.69
Hair drier 0.02 Suitcase 0.08
Cup|0.02 Handbag 0.02
Vase 0.01 Surfboard 0.01
Cell phone 0.01 Skateboard 0.01
Book 0.01 Boat 0.01
Bus 0.01

Potted plant 0.01

Figure 2. Inference of ResNet-50 [6] model trained with our AEVLP method on images from COCO [11] test dataset.
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