VSRM: A Robust Mamba-Based Framework for Video Super-Resolution

Supplementary Material

1. Architecture

Architecture. In VSRM, two consecutive second-order
bidirectional propagation blocks are utilized, following the
PSRT [6] and IART [8]. We use pre-trained SPyNet [5] as
our flow estimation network. The embedding dimension is
set to 120 channels, and each propagation branch consists of
18 Dual Aggregation Mamba Blocks (DAMB) , with short-
cut connections introduced every 6 blocks. The initial win-
dow size is set to 2 x 2 for the deformable cross-mamba,
and the number of channels is also set to 120 in the DCA
alignment module.

We use sinusoidal positional encoding ~(p) for de-
formable cross-mamba module. The positional encoding
v(p) € R? — R*’ is computed by projecting low-
dimensional input coordinates p to a 4D dimensional hy-
persphere.
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where w is the angular speed and D controls the number
of frequency bands from w to w?” 1. A larger D provides
higher capacity for encoding higher frequency.
Computational Complexity Comparison. Given a visual
sequence X;, € RIXTXHXWXC “yhere T is the number
of frames in the sequence, C' is the number of channels, and
H and W represent the height and width of each frame, we
will perform a complexity analysis comparing full attention,
window attention, and k-direction mamba (SSM in mamba
scan by k directions). Notably, k is 2 for the Spatial-to-
Temporal block (S2TMB) and 1 for the Temporal-to-Spatial
block (T2SMB) because they scan in 2 and 1 directions,
respectively. For window attention approach, X;,, will be
divided into % non-overlapping cubes of size T X h X w.
For mamba, N is a fixed parameter set to 16 by default. Let
M = THW be the sequence length. The computational
complexity of these approaches can be expressed explicitly
as:

¥(p) = [[sin(wp), cos(wp)] , - . ., [sin(

Q(self-attention) = 4D2(THW) + 2D(THW )? 2)

Q(window-attention) = 4D?(THW) + 2ThwD(THW) (3)
Q(k-mamba) = k x [N(3THW)(2D) + N*>(2D)(THW)] (4)

It demonstrates that self-attention’s computational de-
mand scales quadratically with the sequence length M,
whereas window attention and k-mamba operations scale
linearly. While window attention reduces the quadratic
complexity of full attention by limiting attention to small
windows, mamba achieves true linear complexity with re-
spect to the sequence length M, offering efficient global

modeling without the constraints of fixed window sizes.
The computational complexity of window attention depends
significantly on the size of the window. If the window size
is too small, the model’s receptive field is limited, which
is harmful for global modeling. Conversely, if the window
size is too large, it increases the quadratic computational
complexity overhead.

2. Experimental Settings

Datasets. In the video super-resolution (VSR) domain, the
REDS [4] and Vimeo-90K [9] datasets serve as standard
benchmarks and are widely used. The REDS dataset in-
cludes 270 video sequences, each consisting of 100 frames.
Following common data-splitting practices, we allocate 266
sequences for training and 4 for testing. Meanwhile, the
Vimeo-90K dataset comprises 64,612 training sequences
and 7,824 testing sequences. Despite their widespread use,
these datasets exhibit distinct motion characteristics. The
motion in Vimeo-90K is relatively small. In contrast, the
REDS dataset contains more significant motion. In our ex-
periments, we focus on the x4 VSR task and generate low-
resolution (LR) video frames using bicubic interpolation for
a fair comparison with other state-of-the-art methods.
Implementation. We use the Adam optimizer [2] along
with the Cosine Annealing learning rate schedule [3]. We
use a batch size of 8, and the input low-resolution (LR)
frames have a patch size of 64 x 64. DCA and TGFN use
3x3 window/kernel size.

For VSRM on the REDS dataset, we train for 600K it-
erations using 16 input frames and 300K iterations using 6
input frames. The initial learning rate is set to 2 x 10~* and
gradually reduces to 1 x 10~7 using a cosine decay sched-
ule. The batch size is fixed at 8.

For VSRM training on the Vimeo-90K dataset, we per-
form 300K iterations with 7 input frames. The initial learn-
ing rate is set to 2 x 10™% and gradually decreases to
1x 10~ 7 using a cosine decay schedule. Following [1, 6, 8],
we initialize the model with the well-trained model using
REDS dataset, and the batch size is maintained at 8.

The test results for the REDS model are evaluated on the
REDS4 dataset, while the Vimeo-90K model is tested on
Vimeo-90K-T and Vid4.

Ablation Study. For ablation studies on the REDS dataset,
the total training iterations are set to 100K, with a learning
rate initialized at 2 x 10~* and subjected to a cosine learning
rate decay, reaching 1 x 10~7 at the end of training. The
batch size used for these experiments is 2. The embedding
dimension is set to 84 channels. All ablation studies are run



on the RTX 3090 GPUs.

3. Limitation Discussion

Limitation of Recurrent Framework. We will discuss
the limitation of VSRM and, more generally, the recurrent
framework to provide more insights for future works. 1)
Due to the purpose of VSRM and other recurrent networks
to utilize long-term information, they are typically trained
with extended sequences, such as 16 frames. Consequently,
compared to sliding-window techniques like EDVR [7], the
training duration for recurrent VSR models tends to be
longer. 2) Similar to the most recent works, such as PSRT
[6] and TART [8], VSRM operates on a bidirectional re-
current framework that demands a considerable amount of
memory. In bidirectional recurrent networks, the interme-
diate features of the entire sequence must be stored, which
means the memory requirements grow with the sequence
length. Nonetheless, this issue can be mitigated with cer-
tain hardware solutions, such as storing the features in the
CPU.

Limitation of Alignment Module. A fundamental draw-
back of the implicit alignment module is the diminished
clarity regarding the alignment process. Nevertheless, we
contend that it can be substantiated through thorough test-
ing and experimentation.

4. Additional Results

Additional Ablation Study. We conduct an additional ab-
lation study to observe the impact of position encoding in
the alignment module. The results are shown in Tab. 1. This
indicates that including positional encoding significantly
enhances PSNR of 0.22 compared to the basic deformable
window cross-mamba mechanism. When positional encod-
ings are solely activated for the reference window PER, a
substantial decline in PSNR indicates that estimating mo-
tion in integer values can lead to poorer results. The model
experiences a minor decrease in performance when posi-
tional encodings are applied only to the query tensor PEg.
The above results show the impact of sinusoidal position
encoding on the overall model’s performance.

PE, PER PSNR (dB)
X X 30.87
v X 29.93
X v 30.96
v v 31.09

Table 1. Effective of positional encodings in the alignment mod-
ule. The positional encoding improves the alignment effectiveness
compared to the naive deformable window-based cross-mamba.

Additional Qualitative Results. We offer additional vi-
sual comparisons of our method compared to the current

SOTA methods on the REDS4 and Vid4 datasets in Fig. 1
and Fig. 2. All current techniques result in blur or distortion
of features in the output frames, while our approach retains
finer details more effectively and sharply.
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Figure 1. More qualitative comparisons on REDS4 dataset, VSRM shows sharper and more accurate results, revealing finer patterns.
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Figure 2. More qualitative comparisons on Vid4 dataset, VSRM shows sharper and more accurate results, revealing finer patterns.
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