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Figure 1. Comparison of the downstream tasks. The visual results
indicate that LightsOut enhances performance on object detection
tasks as well. Our approach not only boosts detection confidence
scores but also enables the identification of objects previously
undetectable due to flare artifacts.

A. Appendix Section
A.1. Implementation Details

Dataset and Preprocessing. We use the benchmark dataset
Flare7k [1] for both training and testing. Since the dataset
was not originally designed for our tasks, we preprocess it to
better suit our requirements. Specifically, to handle off-frame
or incomplete light source images and define outpainted
regions, we first generate YCbCr luminance masks and then
apply an algorithm, formalized in Algorithm 1, to identify
the largest rectangular area in each image that excludes the
light source. Once the bounding box is obtained, we crop the
image on-the-fly during training and inference. The cropped
region is then masked with a pixel value of 127, defining the
area to be outpainted.

Training Details. Our framework comprises three indepen-
dently trained modules, all implemented on an NVIDIA
RTX4090 GPU. The components are optimized indepen-
dently, allowing each module to specialize in a distinct sub-
task and enabling them to collectively improve the system’s
overall performance when integrated. The multitask regres-

Algorithm 1 Cropping Algorithm
1: function IMAGECROP(image)
2: function LARGESTRECTANGLE(heights)
3: heights.append(0)
4: stack← [−1]
5: max area← 0
6: max bbox← (0, 0, 0, 0) ▷ (area, left, right, height)
7: for i← 0 to len(heights)− 1 do
8: while heights[i] ¡ heights[stack[-1]] do
9: h← heights[stack.pop()]

10: w ← i− stack[−1]− 1
11: area← h× w
12: if area > max area then
13: max area← area
14: max bbox ← (area, stack[−1] + 1, i −

1, h)
15: end if
16: end while
17: stack.append(i)
18: end for
19: return max bbox
20: end function
21: max area← 0
22: max bbox← [0, 0, 0, 0]
23: heights← zeros like(image.shape[1])
24: for row← 0 to image.shape[0]− 1 do
25: temp← 1− image[row]
26: heights← (heights + temp)× temp
27: (area, left, right, height) ←

LargestRectangle(heights)
28: if area > max area then
29: max area← area
30: max bbox← [left, right, (row−height+1), row]
31: end if
32: end for
33: return max bbox
34: end function

sion module was trained with a learning rate of 1 × 10−4,
batch size of 32, for 100 epochs, and we set the number of
predicted light sources N to 4. The light source condition
module was optimized using a learning rate of 1× 10−5 and
a batch size of 8 for 20,000 steps. Finally, the Stable Diffu-
sion inpainting network [7] was fine-tuned using LoRA [3]
with a learning rate of 1 × 10−4 and a batch size of 8 for
25,000 steps to achieve optimal performance while maintain-
ing computational efficiency.

Inference Settings. During outpainting process, we set the
number of sampling steps to 50, the guidance scale to 7.0,
and perform noise reinjection 4 times. Additionally, we uti-
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Figure 2. Failure Cases.

lize BLIP-2 [6] to automatically generate captions, thereby
minimizing human bias.

Evaluation metrics. We evaluate flare removal quality using
PSNR, SSIM [9], and LPIPS [10], and assess the accuracy
of our light source prediction using mean Intersection over
Union (mIoU).

A.2. Downstream Tasks

Lens flare artifacts can negatively impact images in various
computer vision tasks. To examine how flare removal af-
fects object detection performance, we utilize the pre-trained
YOLOv11 [5] detector to compare two scenarios: images
directly processed by SIFR models, and images first en-
hanced by our proposed outpainting approach before being
input to SIFR models. Fig. 1 demonstrates that our proposed
approach yields improvements in detection accuracy, partic-
ularly for objects located in regions previously compromised
by flare artifacts.

A.3. In-the-Wild Images.

We present additional outpainting results on self-collected
in-the-wild scenes in Fig. 4, along with flare removal
comparisons against baseline methods (Zhou et al.[11],
Flare7K++[2], and MFDNet [4]) in Fig. 3. These results
highlight our method’s effectiveness in outpainting off-frame
regions and improving the performance of existing SIFR
models, even on challenging in-the-wild images.

A.4. Failure Cases

The main failure cases exhibit two characteristic features.
First, when the overall image brightness is high, the bright-
ness differential between the flare and other parts of the
image becomes less pronounced. Second, when the flare
occupies a relatively large proportion of the entire image.
Both scenarios make it difficult to delineate the flare region
precisely, even with the integration of our proposed method.
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Figure 3. Flare removal results for in-the-wild scens. The red
boxes indicate flare regions in the images. Our method effectively
addresses off-frame light source scenes, which existing SIFR mod-
els fail to handle.

A.5. Qualitative Comparisons of Light Source Mask
Prediction.

Fig. 5 compares the light source predictions from our multi-
task regression module with those generated by U-Net [8].
The results demonstrate that our proposed module predicts
the positions and radii of light sources more accurately, both
in single and multiple light source scenarios.

A.6. Additional Qualitative Comparisons

We present extensive supplementary visual evidence to
demonstrate the efficacy of our approach. Figures Fig. 6,
and Fig. 7 showcase additional flare removal results across
diverse imaging conditions. Furthermore, we provide com-
parative analyses between our outpainting results and those
produced by both baseline methods and state-of-the-art
diffusion-based inpainting and outpainting techniques in
Fig. 8, Fig. 9. These comprehensive visual comparisons sub-
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Figure 4. Outpainting results for in-the-wild scens.

stantiate the superior robustness and effectiveness of our
proposed methodology across a wide spectrum of challeng-
ing scenarios.
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Figure 6. Additional Qualitative Comparisons. .
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Figure 7. Additional Qualitative Comparisons. .
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Figure 8. Additional Qualitative Comparisons. .
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Figure 9. Additional Qualitative Comparisons. .
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