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Figure 1. The overview of our person segmentation model.

1. Person Segmentation
To gain the protagonist mask from the given condition, we
propose a lightweight person segmentation model based on
DiT [7] architecture, where the parameter number of our
segmentation model is only 23.5MB compared with SAM-
B [4] (91MB). The overview is shown in Figure. 1. SAM-B
requires 40 seconds to extract masks of 24 frames, while our
segmentation model only requires 6 seconds to accomplish
the same job. Given a single image and a target pose, our
segmentation model can predict the protagonist mask align-
ing with the target pose. Concretely, we concatenate the
single image with the target pose in the channel dimension
as the input of our model. We leverage several convolu-
tion blocks to extract different levels of representations, and
the resulting features are sent to DiT for further modeling.
The output of DiT is sent to the decoder to obtain the pre-
dicted mask, which is thresholded to obtain a binary mask.
It is worth noting that the intermediate features from the first
four convolution modules are concatenated with the outputs
of the corresponding convolution modules in the decoder,
which can contribute to enhancing controllable modeling.

In terms of training, we train our person segmentation
model Seg(·) using a 1000 video subset of our collected
dataset. We train our segmentation model from scratch at
the image level. With an average video length of 60 seconds
and 30 FPS, the total number of training images exceeds 1.8
M. We split the entire video into two clips, where the first
clip serves as the source and the second clip serves as the
target. We obtain the poses and the masks of the protagonist

from the target by employing DWPose [12] and SAM [4] on
the target frames. The source frame Fsr and the extracted
pose Ptg from the target serve as the inputs of our person
segmentation model during training, and the extracted mask
Mtg from the target serves as ground truth. We implement
the MSE loss to train our model as follows:

Mpred = Seg(Fsr,Ptg),

Lmse(M
pred,Mtg) =

∥∥∥Mpred −Mtg

∥∥∥2

2
.

(1)

It is worth noting that all components of our person segmen-
tation model are trainable.

2. Details of Controllers
The Pose Controller (PoCtr) consists of four convolution
blocks with two convolution layers. The Reference Con-
troller (ReCtr) includes four convolution blocks for down-
sampling source features to the same dimension as the dif-
fusion latents. The detailed frameworks of PoCtr and ReCtr
are shown in Figure. 2.

3. Preliminaries
Diffusion models [2, 8, 10] have shown gorgeous results for
high-quality image synthesis. They are based on thermody-
namics, consisting of a forward diffusion process and a re-
verse denoising process. During the forward process, mod-
els appended to a constant noise schedule αt add random
noise to the source sample x0 at time step t for obtaining a
noise sample xt:

q(x1:T ) = q(x0)

T∏
t=1

q(xt|xt−1),

q(xt|xt−1) = N (xt;
√
αtxt−1, (1− αt)I).

(2)

The source sample x0 is ultimately inverted into Gaussian
noise xT ∼ N (0,1) after T forward steps. The reverse
process recovers x0 from xT by some denoising steps. The
denoising network εθ(xt, t) tends to predict the noise ε
conditioned on the current sample xt and time step t by
training with a simplified mean squared error:

Lsimple = Ex0,ε,t(∥ε− εθ(xt, t)∥2). (3)

Further, diffusion models can be regarded as continuous
models [10]. According to Langevin dynamics [9], the con-
tinuous denoising process can be depicted as the score func-
tion ∇xt log q(xt), sampling from the Gaussian noise. Re-
grading the condition c, the score function can be described
as ∇xt

log q(xt, c), supporting conditional denoising.
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Figure 2. The overview of our PoCtr and ReCtr.

⨀
Pooling Cosine 

Similarity

𝐹𝑡
𝑒 𝑀𝑒

⨀

𝐹𝑡
𝑟𝑀𝑟

Pooling
Eq.2

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

∩ 1 5 8 13 16 Cosine 

Similarity𝐹𝑡,𝑘,𝑖,𝑗
𝑒

∩

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 5 8 13 16

𝐹𝑡,𝑘,𝑖,𝑗
𝑟

𝐹𝑡
𝑟𝑀𝑜𝑣𝑒𝑟𝑀𝑜𝑣𝑒𝑟𝐹𝑡

𝑒

Eq.3

Avg

Figure 3. The pipeline of Eq.2 and Eq.3 of the main paper.

4. More Pooling Details
In Eq. 2 and Eq. 5 of the main paper, the elements
(F e

t ⊙M e, F r
t ⊙M r, F e

t ⊙M body , and F r
t ⊙ (1−M r))

in Pool(·) have dimensions (T,N,H,W ). These need to
be pooled into a sequence for subsequent cosine similarity
calculation. In Eq. 3 and Eq. 4 of the main paper, F e

t,k,i,j

and F r
t,k,i,j are already sequences. For example, F e

t,k,i,j

represents a sequence where each element corresponds to
a position with value=1 in Mover

t,k,i,j or M body
t,k,i,j . Figure.3

illustrates the pipeline of Eq.2 and Eq.3 for clarity.

5. Implementation of Consistency Guidance
According to previous works [1, 10], when the diffusion
model εθ(ze

t ) tends to predict the noise added to the original
frames, it can be converted to the form of the score function,
which can be depicted as:

∇ze
t
log q(ze

t ) = −
1√

1− ᾱt

εθ(z
e
t ). (4)

We implement the additional conditions F e
t and F r

t to the
score function, which can be described as:

∇ze
t
log q(ze

t ,F
e
t ,F

r
t ) = ∇ze

t
log q(ze

t ) +∇ze
t
log q(F e

t ,F
r
t |ze

t )

= −
1

√
1− ᾱt

εθ(z
e
t ) +∇ze

t
log q(F e

t ,F
r
t |ze

t ).

(5)
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Figure 4. The illustration of our proposed functions.

We can ultimately obtain a new noise prediction model
ε̂θ(z

e
t ,F

e
t ,F

r
t ) for the joint distribution as follows:

ε̂θ(z
e
t ,F

e
t ,F

r
t ) = εθ(z

e
t )−

√
1− ᾱt∇ze

t
log q(F e

t ,F
r
t |ze

t ).
(6)

Therefore, the sampling process equipped with our pro-
posed consistency guidance can be depicted in Algorithm
1. guidance(·) and decoder(·) indicate our proposed con-
sistency guidance and diffusion decoder. αfg, αover, αbody ,
αcom are set to 4.0, 6.0, 2.4, 1.2.

Furthermore, we illustrate our proposed 4 functions in
Figure 4. The areas with black stripes are used to calcu-
late the function. Sim ↑ indicates that the corresponding
function encourages the two areas to have higher similarity
and thus a similar appearance, while Sim ↓ means that the
function aims to push the feature of these two areas away to
avoid ghosting artifacts.

6. Advantages over MotionEditor
As MotionEditor is the only open-source video motion
editing model, we set MotionEditor as our primary com-
petitor in our comparison experiments. MotionFollower
and MotionEditor are distinct in various aspects. Motion-
Follower has the following differences: (1) MotionEditor
implements a resource-intensive attention injection mech-
anism to preserve the appearance of the source, while our
MotionFollower novelly introduces score regularization to
maintain consistency. Concretely, the attention injection
mechanism of MotionEditor combines the keys and values
from both the reconstructing and editing branches, thereby
expanding the dimensions of each key and value. In con-
trast, MotionFollower abandons the previous consistency



Algorithm 1 Sampling process equipped with our consistency guidance
Input: Source video Vsr , Source Mask Mr , Source Pose Psr; Target Pose Ptg , Predicted Mask Me

ze
T ← sample fromN (0, I)

for all t from T to 1 do
ε,F e

t ,F
r
t ← εθ(z

e
t ,Vsr,Psr,Ptg)

∇ze
t
log q(F e

t ,F
r
t |ze

t )← guidance(ze
t ,F

e
t ,F

r
t ,Mr,Me)

ε̂← ε−
√
1− ᾱt∇ze

t
log q(F e

t ,F
r
t |ze

t )

ze
t−1 ←

√
ᾱt−1(

ze
t−

√
1−ᾱtε̂√
ᾱt

) +
√
1− ᾱt−1ε̂

end for
x0 ← decoder(ze

0)
return x0

preservation approaches, such as attention injection. We
decouple the original discrete diffusion process into a con-
tinuous process which can be described as the score func-
tion, following the SDE principle. This score function
steers the denoising towards a specific direction. There-
fore, we propose multiple score regularization functions
to guide the denoising process in the most appropriate di-
rection, ensuring the most consistent results. To the best
of our knowledge, MotionFollower is the first video edit-
ing model to explore score regularization. (2) MotionEdi-
tor only has an attention-based motion adaptor for support-
ing pose sequences, while MotionFollower has two rela-
tively lightweight controllers (Pose Controller and Refer-
ence Controller) for modeling pose sequences and source
videos. (3) MotionEditor is a one-shot video motion editing
model that needs to be trained on each test video. In con-
trast, MotionFollower is trained on a video dataset and can
be applied to arbitrary test videos without training.

Moreover, MotionFollower has the following advan-
tages: (1) Our MotionFollower is capable of manipulat-
ing the video’s motion while maintaining other extraneous
details, such as large-scale camera movements, per-frame
background variations, and the complex protagonist’s ap-
pearance. By contrast, MotionEditor fails to handle par-
ticular videos featuring such scenarios. (2) MotionFol-
lower is significantly lighter than MotionEditor. Motion-
Follower leverages score regularization to maintain consis-
tency, rather than conventional attention injection, which
expands the dimension of keys and values. (3) The infer-
ence speed of MotionFollower is significantly faster than
MotionEditor. MotionFollower has a video processing
throughput of 28.8 frames per minute, whereas MotionEdi-
tor processes at 1.6 frames per minute.

7. Framework Discussion
7.1. PosCtr
PosCtr is initialized with Gaussian weights and zero con-
volution is applied in the final projection layer. Thus, the
pose features are Gaussian, and the sum of two Gaussian
distributions remains Gaussian. Therefore, it makes sense

to directly add pose feature to the diffusion latents.

7.2. ReCtr
We directly add features of ReCtr to the diffusion latents,
as the diffusion model is capable of adaptively capturing
appearance features. Therefore, when the protagonist’s po-
sition in the source video is slightly misaligned with that in
the target video, it does not impede the diffusion learning,
as evidenced by the results in Sec. 10.

7.3. Dual Branches at Inference
We build up dual branches in inference for conducting our
consistency guidance via score regularization, which may
slightly increase the GPU memory consumption compared
with the single branch-based architecture. Another simple
solution is to replace our score regulation and dual branches
with a simple ControlNet to preserve the appearance de-
tails and maintain content consistency. However, Table.
4 in the main paper shows that w/o score regulation and
ours have similar GPU memory usage while replacing Con-
trolNet with our controllers saves significant memory. Our
score regulation ensures video consistency, particularly in
scenes with large camera movement. However, a simple
controller fails to preserve dynamic details in such scenar-
ios, as evidenced by the results in Table. 4 and Figure. 5
in the main paper. Thus, it is necessary to remain the dual
branch-based architecture to perform score regularization.

8. Predicted Masks
Figure. 5 illustrates the results of predicted masks by our
person segmentation model. We can observe that our per-
son segmentation model can accurately predict the masked
regions based on the given pose and the body size of the
protagonist in the given reference image.

9. Application Discussion
9.1. Multiple Motion Types
In addition to dancing, we conducted a qualitative exper-
iment that considered other types of motion, such as run-
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Figure 5. The results of predicted masks.

ning, playing Tai Chi, and playing basketball. The results
are illustrated in Figure. 9. It is noticeable that our Motion-
Follower can handle various types of motion information.

9.2. Long Video Synthesis

Figure. 10 compares our MotionFollower and the strongest
competitor MotionEditor on a long video of 600 frames,
containing complex appearances and camera movements.

9.3. Camera Movement

Figure. 11 demonstrates the comparisons in a video that
contains large camera movements. We modify Follow-
Your-Pose [5] by replacing noise inputs with null-text op-
timized source frames [6] for editing.

9.4. Human Motion Transfer

Figure. 12 compares our method and other approaches to
the Human Motion Transfer task. We also conduct an ad-
ditional experiment on Human Motion Transfer, using the
same case reported in previous human motion transfer pa-
pers [3, 11, 14], as shown in Figure. 13.

9.5. Comparison with Video Inpainting

The video motion editing can also be accomplished by em-
ploying video inpainting models (e.g. ProPainter [13]) and
human motion transfer methods. However, the overall qual-
ity of this composed approach is not optimal. Figure. 6
demonstrates that our MotionFollower can drastically re-
tain the background details and content consistency, while
ProPainter [13]+Champ [14] fail to preserve the cloth-
ing/background details and suffer from blurry noises.

Inputs

ProPainter
+Champ

Ours

Figure 6. The comparison results between MotionFollower and
ProPainter+Champ.

9.6. Videos with Orientation Changes
For some videos where the orientation changes significantly
(e.g., from frontal to backward), Sfg(·) has limitations, as it
forces features in the predicted mask to align with those in
the source mask. Thus, for this particular situation, we tem-
porarily remove Sfg(·) while keeping the rest unchanged,
as shown in Figure. 8. Combining different score regula-
tion functions can handle various scenarios.

10. Additional Results
Figure. 14, Figure. 15, and Figure. 16 show additional
video motion editing results of our proposed MotionFol-
lower in the specific videos featuring complicated back-
grounds. Figure. 17 illustrates video motion editing results
of our proposed model in the videos including complex ini-
tial poses. Figure. 18 shows the editing results of our Mo-
tionFollower in the videos with camera movements. Addi-
tionally, Figure. 19 shows the additional performance com-
parison results between our MotionFollower and the most
advanced video motion editing model MotionEditor.

11. Additional Ablation Study
We conduct a more qualitative ablation study, as illustrated
in Figure. 20. We can see that w/o Sfg results in de-
grading quality of the foreground. The plausible reason is
that the diffusion model struggles to preserve the details of
the protagonist’s appearance without explicit foreground-
related guidance. w/o Sover contributes to the occurrence
of blurry noises in the dynamic background. The main rea-
son is that it is relatively difficult for the diffusion model to
capture and model the dynamic background, as its data dis-
tribution frequently varies. w/o Sbody and w/o Scom both
cause some semantic distortion due to the interference from
non-overlapping protagonist’s parts. The results demon-
strate that our functions can effectively promote the model
to preserve the appearance of foregrounds and backgrounds.

We further conduct an ablation study on masks used in
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Figure 7. The ablation study on masks.

our score regulation, as shown in Figure. 7. w/o Masks
refers to removing all masks used in the score regula-
tion. The results indicate that MotionFollower can perform
higher-quality video motion editing with leveraging multi-
ple masks during our score regulation. Additionally, the re-
sults demonstrate that diffusion latents are highly abstracted
compared to pixel space, but the predicted mask still makes
sense in the feature space. Aggregated features in the spatial
domain do not affect the model’s perception of the spatial
layout. This also can be validated by the fact that segmen-
tation methods can still accurately predict masks on aggre-
gated features, meaning the features well perceive the mask.

12. Limitations

Figure. 21 shows one failure case of our MotionFollower.
The toy bear located behind the girl remains incomplete
due to the foreground obstruction in the source video. Our
model struggles to fill in the obscured areas in the back-
ground when encountering numerous small objects in the
background. The probable solution is to explicitly introduce
an additional inpainting adaptor to the diffusion model for
recovering the background areas. This part is left as future
work. Additionally, we find that it is challenging for our
model to handle particular videos involving complex inter-
actions with other objects. The plausible explanation is that
interactions with other objects always result in occlusion.
Our future work will focus on this challenging video.

13. Human Subjects Data Concern

Our training and testing datasets both involve human sub-
jects, containing identifiable information. Since the col-
lected videos are primarily from social media platforms
(BiliBili, TikTok, and YouTube), we contacted the video up-
loaders via private messages to inquire whether they agreed
to allow their videos to be used for non-commercial aca-
demic research, and we obtained their consent. All videos
in our training and testing datasets have been approved by
their corresponding video uploaders.

14. Ethical Concern
While MotionFollower has broad applicability, it is crucial
to address several concerns: the risks of misuse in creating
deceptive media, potential biases in training data, and the
importance of respecting intellectual property.
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Figure 8. The edited video feature dramatic orientation variation.
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Figure 9. The edited videos feature various types of motion information.
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Figure 10. Qualitative comparison on a long video containing complicated appearances and camera movements.
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Figure 11. Performance comparison on a video containing large camera movements.
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Figure 12. Comparisons between our MotionFollower and other state-of-the-art models regarding the human motion transfer task.
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Figure 13. Comparisons between our model and other models regarding human motion transfer, using the same case as in Champ [14].



So
u
rc
e

V
id
eo

Ta
rg
et

V
id
eo

Sy
n
th
es
iz
ed

V
id
eo

So
u
rc
e

V
id
eo

Ta
rg
et

V
id
eo

Sy
n
th
es
iz
ed

V
id
eo

So
u
rc
e

V
id
eo

Ta
rg
et

V
id
eo

Sy
n
th
es
iz
ed

V
id
eo

So
u
rc
e

V
id
eo

Ta
rg
et

V
id
eo

Sy
n
th
es
iz
ed

V
id
eo

Figure 14. Video motion editing results of our MotionFollower (1/5).
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Figure 15. Video motion editing results of our MotionFollower (2/5).
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Figure 16. Video motion editing results of our MotionFollower (3/5).
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Figure 17. Video motion editing results of our MotionFollower (4/5).
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Figure 18. Video motion editing results of our MotionFollower (5/5).
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Figure 19. Additional comparison results between our MotionFollower and the strongest competitor MotionEditor.
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Figure 20. A more comprehensive ablation study result.
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Figure 21. One failure case of our MotionFollower.
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