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1. Appendix

A. Appendix

Overview
• Appendix A.1 contains additional discussion on related

works.
• Appendix A.2 contains an additional mathematical expla-

nation of DualContrast and Baseline methods.
• Appendix A.3 contains additional details on the experi-

ments.
• Appendix A.4 contains additional results and description

on the datasets.

A.1. Detailed Related Works
Disentangled Representation Learning: PCA [10] and
ICA [16] can be regarded as very preliminary work in the
domain of disentangled representation learning. However,
these methods assume linear subspace and do not work well
for non-linear high-dimensional datasets. Deep learning-
based approaches like Info-GAN [6], β-VAE [13], and their
variants [4, 19, 20, 22] have recently gained wide attention
as generic approaches for learning disentangled represen-
tations. Most of these works manipulated the variational
bottleneck to achieve disentanglement of the latent codes.
However, these works do not aim toward disentangling any
specific factor, e.g., content, group, style, transformation,
etc., from the latent codes. Instead, they generate a series of
images by traversing through each dimension of the latent
space while keeping the remaining dimensions fixed. Thus,
they infer the semantic meaning of each dimension of the
learned latent factor. Consequently, these methods do not
perform well in disentangling any specific generative fac-
tor compared to those that aim to disentangle several (two
in most cases) specific generative factors [3, 35, 38]. Un-
like these methods, our method specifically disentangles the
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content and transformation factors of data samples, whereas
the content and transformation are defined in Section 3.1.

Unsupervised Content-style disentanglement: Apart
from [39], several methods [23, 27, 30, 33, 34, 40] exist
that perform unsupervised content-style disentanglement,
focusing on natural images. Unlike these methods, our
work primarily focuses on disentangling content and trans-
formation in shape focused image datasets. Moreover, we
do not depend on any ImageNet pretrained models as our
images of interest differ greatly from the natural images of
ImageNet. The very recent work by [30] assumes access
to the style factors to disentangle that style from content in
feature outputs from pretrained models. Unlike this work,
we do not assume access to the transformations beforehand
for disentanglement.

cryo-EM Heterogeneous Reconstruction: There ex-
ists several works on single particle cryo-EM and cryo-
ET reconstruction, e.g., cryoDRGN2 [42], cryoFIRE [25],
cryoAI [24], etc. that performs amortized inference of
transformation (SO(3) × d2) and latent space representing
content. However, these works mainly focus on 2D-to-3D
reconstruction instead of content-transformation disentan-
glement. Our work, on the contrary, focuses on content-
transformation disentanglement. Though we use recon-
struction loss to maximize informativeness of content and
transformation factors, our reconstruction is 2D-to-2D or
3D-to-3D, unlike the aforementioned works. Also, our
transformation factor is implicit and not explicitly limited
to SO(3)× d2.

Shape Analysis: Disentangling content and transfor-
mation latent factors have special significance in the do-
main of shape analysis. Consequently, shape representation
learning, modeling, and analysis [7, 15, 29, 31, 36, 43] are
closely related to our work. Even for shape analysis, PCA
can be regarded as one of the primitive methods. Even now,
PCA is widely used in the shape analysis of protein com-
plexes [2]. Recently, Huang et al. [15] demonstrated that
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PCA with two components on the latent factor learned by
an auto-encoder corresponds to content (shape) and style
(pose) in 3D human mesh datasets. Nevertheless, PCA
is a linear method assuming linear subspaces, which of-
ten does not hold true. A line of shape analysis research
[1, 7, 36, 43] has been performed for non-linear disentangle-
ment of content and style factors in 3D mesh or point cloud
datasets. The goal of these works is to reduce per-vertex re-
construction loss of 3D meshes or point clouds for content-
style-specific generation. These works claim unsupervised
disentanglement as they do not require ground truth fac-
tors. However, they use the identity information of meshes,
which is directly associated with content code. In contrast,
our method does not require identity information apriori to
learn latent codes specific to shape and code. Moreover,
the mentioned works specifically investigate mesh-specific
geodesic losses to achieve minimal per-vertex mesh recon-
struction. On the other hand, we do not specifically aim
to design mesh-specific losses in this work, rather, we pro-
pose a generic content-transformation disentanglement ap-
proach that can be applied to 3D mesh datasets with neces-
sary modification in the model architecture.

A.2. Method

A.2.1. Evidence Lower Bound (ELBO)
Evidence lower bound (ELBO) is the objective that varia-
tional autoencoder (VAE)s optimize during training. The
goal of a VAE is to approximate the true data distribution
p(x) using a latent variable model with a prior p(z) and
a likelihood pθ(x|z). However, computing the exact log-
likelihood is intractable:

log p(x) = log

∫
pθ(x|z)p(z) dz

To address this, a lower bound on log p(x) is optimized,
referred to as the ELBO. Let qψ(z|x) be the approximate
posterior (learned by the encoder). The ELBO is defined
as:

ELBO(x) = Eqψ(z|x)[log pθ(x|z)]−DKL(qψ(z|x) ∥ p(z))

Since, we have two independent latent factors- content
factor c and transformation factor z, the objective can be
written as:

p(x) ≥Eqψ(c,z|x)[log
pθ(x|c, z)
qψ(c, z|x)

]

= Eqψ(c,z|x) log pθ(x|c, z)−KL(qψ(c|x)||p(c))
−KL(qψ(z|x)||p(z))

(1)

A.2.2. Content-Transformation disentanglement with
variational autoencoders (VAE)

A standard Variational Autoencoder (VAE) presumes data
x to be generated by latent variable z, whereas a standard
Gaussian prior is assumed for z.

p(x) =

∫
p(x|z)p(z)dz

p(z) = N (0, Id)

We extended the standard VAE to a two-latent variable set-
ting. We assume latent variables z and c to generate the data
x.

p(x) =

∫∫
p(x|z, c)p(z)p(c)dc

This setting is similar to VITAE [35], SpatialVAE [3], and
Harmony [38]. However, in SpatialVAE [3] and Harmony
[38], latent factor z is restricted as rotation and parameter-
ized transformations, respectively. In SpatialVAE,

p(z) = Unif(a, b) (2)
θ ∼ p(z|x) (3)

xcord = R([−1, 1]d×d; θ) (4)

p(x) =

∫
p(x|c,xcord)p(c)dc (5)

where a and b are specified constants, θ are transformation
(2D rotation and translation) parameters, R is the corre-
sponding transformation operator.

On the other hand, in Harmony,

θ = I(z|x)
x′ = T (x; θ)

p(x′) =

∫
p(x′|c)p(c)dc

where I is an identity function, θ are transformation param-
eters and T is the corresponding transformation operator.

Unlike these two methods, in VITAE [35] and our pro-
posed DualContrast, we use standard Gaussian priors for
latent codes z and c.

p(z) = N (0, Id)

p(c) = N (0, Id)

However, in VITAE [35], z is used to explicitly sample
continuous piecewise affine velocity (CPAB) transforma-
tion parameter θ, and c is used to sample appearance sam-



ples x′.

θ ∼ p(x|z)
x′ ∼ p(x|c)
x = T (x′; θ)

where T is the transformation operator for CPAB transfor-
mation. CPAB transformation parameter is highly expres-
sive compared to affine transformation parameters used in
spatialVAE.

Contrary to VITAE [35], we do not use z to sample any
transformation parameters explicitly; rather use both z and
c to generate x. To this end, we use a contrastive learning
strategy that is described in Section 3 of the main paper.
Without explicitly sampling any transformation parameter,
we improve the expressiveness of our transformation latent
factor z even more than the CPAB transformation used in
VITAE [35].

A.2.3. Feature Suppression of SimCLR and MoCo con-
trastive losses:

The contrastive losses used in popular self-supervised learn-
ing methods SimCLR [5] or MoCo [12] as did not help
much in disentangling content and transformation in our
experiments. It has been demonstrated that these meth-
ods often learn nuisance image features or noise to obtain
a shortcut solution to the contrastive objective [18]. This
phenomenon is referred to as feature suppression of con-
trastive objectives. We found that using reconstructive loss
was necessary to prevent the feature suppression problem.

A.2.4. Choice of Transformation to create Contrastive
pairs

We leveraged different transformation functions T (x) to
create contrastive pairs in DualContrast for LineMod RGB
object dataset. We used rotation, translation, scaling, blur,
saturation, and hue as T (x). We performed both qualitative
(Table 1) and quantitative analysis on the effect of different
T (x) for content-transformation disentanglement in Dual-
Contrast. We observe that using Scale or Blur makes the
transformation factor z uninformative of the data and it does
not capture anything at all. Consequently, changing this z
factor while generating images does not change the image
at all for these two codes (Figure 1). On the other hand, us-
ing translation shows small negligible differences in the c-z
transfer-based image generation. Color-based transforma-
tions like saturation and Hue only change the color of the
generated image, instead of affecting its shape-based trans-
formation. Only rotation provides generalization of z and
enables z to capture viewpoint transformations present in
the dataset.

Table 1. Transformation Factors and Corresponding Dscore(c|z)
and Dscore(c|c) values.

Transformation Factor Dscore(c|z)(↓) Dscore(c|c)(↑)
Rotation 0.48 0.95
Translation 0.65 0.98
Scale 0.52 0.91
Contrast 0.51 0.93
Saturation 0.71 0.86
Hue 0.61 0.88
Blur 0.47 0.92

A.3. Experiments
A.3.1. Implementation Details
We implemented our model in Pytorch (version 1.9.0). We
used a convolutional neural network (CNN) (3 convolu-
tional layers for MNIST, 4 for others) to implement the en-
coder and a fully connected network (FCN) (5 layers) to
implement the decoder. For subtomograms, we used a 3D
convolutional network for the encoder. We do not use any
pooling layers in our networks.

While training the models, we use a batch size of 100
and an Adam optimizer with a learning rate of 0.0001.
We used a linear learning rate scheduler that decays the
learning rate of each parameter group by 0.1 every 50
epochs. We trained our models for 200 epochs. We used
the same setting for our models and the baseline models.
We used NVIDIA RTX A500 and AMD Radeon GPUs to
train the models.

Choice of latent dimension: For Harmony [38] and
SpatialVAE [3], the transformation latent factor is restricted
to dimension 3. For VITAE [35], SimCLR [39], and our
DualContrast, there is no such restriction on the transforma-
tion latent factor dimension and same dimension was used
as the content factor. For all the methods, the dimension of
the content factor was set as 10 for MNIST, 50 for subto-
mogram dataset. For hyperparameters γc and γz, we set
a very small value (→ 0) in our experiments. The values
determine how strictly the content factor and the transfor-
mation factor should mimic the prior standard multivariate
gaussian distribution.

Evaluation metrics in protein subtomograms: Apart
from measuring disentanglement in the latent space, we
also quantitatively assessed the latent space clustering per-
formance and the quality of the structures obtained by
coarsely refining each cluster of subtomograms with RE-
LION. To measure the clustering performance, we used Ad-
justed Rand Index (ARI). The ARI is commonly used to
measure the similarity between two data clusterings, cor-
recting for chance. Given a contingency table where:
• nij is the number of objects in both cluster i of the ground
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Figure 1. Content-transformation transfer based image generation results using different transformation functions (T (x)) to create con-
trastive pairs. Only rotation ensures transformation factor z to capture object viewpoints- the transformation factor present in the original
dataset.

Figure 2. Visualization of the creation of contrastive pairs for MNIST. (a) Creating positive pair with respect to (w.r.t) content factor
and negative pair w.r.t. transformation. (b) Creating negative pair w.r.t. content. (c) Creating positive pair w.r.t. transformation. We show
the processes for a batch of MNIST digits with a batch size of 5.

truth and cluster j of the predicted labels,
• ai =

∑
j nij is the sum over row i,

• bj =
∑
i nij is the sum over column j,

• n is the total number of data points.
The ARI is defined as:
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To calculate ARI, we used the ADJUSTED RAND SCORE
function from SKLEARN.METRICS.

To evaluate the quality of structures obtained by coarse
refinement, we used AUC-FSC (Area Under the Curve of
Fourier Shell Correlation), which has been adopted by the
community to measure structure recovery performance in
heterogeneous cryo-EM/ET datasets [17]. It is a scalar met-
ric used to summarize the overall agreement between two
3D volumes in frequency space.

The Fourier Shell Correlation (FSC) measures the cor-
relation between two 3D volumes in Fourier space as a func-
tion of spatial frequency s. It is defined as:



FSC(s) =

∑
i∈s

F1(i) · F ∗
2 (i)√∑

i∈s
|F1(i)|2 ·

∑
i∈s

|F2(i)|2

where:
• F1(i) and F2(i) are the complex Fourier coefficients of

the two volumes,
• F ∗

2 (i) is the complex conjugate of F2(i),
• i ∈ s denotes the voxels in the shell corresponding to

spatial frequency s.
The AUC-FSC summarizes the FSC curve over the full

frequency range [0, 1] and is defined as:

AUC-FSC =

∫ 1

0

FSC(s) ds

In our case, we obtain a coarsely refined structure per
each subtomogram class. For protein compositions, we de-
termine 4 structure classes and for compositions, we obtain
6 structures. We calculate the AUC-FSC between the re-
fined structure and its best matching structure template we
used for simulating the dataset. Before calculating AUC-
FSC, we manually align the template and coarsely-refined
structures with ChimeraX [28]. We report the arithmetic av-
erage and minimum of the AUC-FSCs we obtain for all the
structural classes.

A.4. Additional Results
A.4.1. MNIST
We use the commonly used MNIST dataset to initialize our
experiments. MNIST is a dataset in the public domain that
the research community has extensively used. It contains
grayscale images of handwritten digits. Each image is of
size 28 × 28. The training set contains 60,000 images,
whereas the test set contains 10,000. We use the same train
test split for our experiments.

Our quantitative results (Table 2) demonstrate the supe-
rior performance of DualContrast compared to the base-
lines. It also shows that the z factor in DualContrast con-
tains information other than rotation (low S(z)), but is also
separated from content (low D(c|z) and high D(c|c).

In qualitative evaluation of image generation with vary-
ing c and z codes in MNIST (Figure 3), we observed that-
Harmony, SpatialVAE, and C-VITAE generated many im-
ages with erroneous content and transformations. However,
DualContrast did not make such mistakes. Moreover, Du-
alContrast visibly disentangled several conformation-like
transformations. Harmony and SpatialVAE simply rotated
the image, not capturing any other information about the
transformation source. This is consistent with their high
S(z) score. VITAE somewhat represented the conforma-
tion with its explicit modeling of piecewise-linear trans-
formation. Nevertheless, DualContrast most appropriately

captured the transformation of the source digits. We also
include tSNE embedding of the content codes inferred by
the models on the MNIST test dataset associated with class
labels (Figure 4). On the embedding space, DualContrast
clearly shows superior clustering performance.

Table 2. Disentanglement metrics on MNIST

Method D(c | c)(↑) D(c | z)(↓), S(z)(↓) SAP (c)(↑)
SpatialVAE 0.81 0.28,0.98 0.53
Harmony 0.82 0.31,1.00 0.51
SimCLR (Discriminative) 0.58 0.60,0.63 0.02
SimCLR (Generative) 0.53 0.67,0.61 0.14
VAE with 2 latent space 0.63 0.63,0.69 0.00
VITAE 0.77 0.32,0.72 0.45
DualContrast (w/o Lcon(c)) 0.87 0.21,1.00 0.66
DualContrast (w/o Lcon(z)) 0.79 0.85,0.60 0.06
DualContrast 0.89 0.31,0.75 0.58

A.4.2. LineMod
LineMod [14] dataset is originally designed for object
recognition and 6D pose estimation. It contains 15 unique
objects: ‘ape’, ‘bench vise’, ‘bowl’, ‘cam’, ‘can’, ‘cat’,
‘cup’, ‘driller’, ‘duck’, ‘eggbox’, ‘glue’, ‘hole puncher’,
‘iron’, ‘lamp’ and ‘phone’, photographed in a highly clut-
tered environment. We use a synthetic version of the dataset
[41], which has the same objects rendered under different
viewpoints. The dataset is publicly available at this url. The
dataset is publicly available under MIT License.

This dataset has 1, 313 images per object category. We
used 1, 000 images per category for training and used the
remaining for testing. For many objects, the object region
covers only a tiny part of the original image. To this end, we
cropped the object region from the original image using the
segmentation masks provided with the original dataset. Af-
ter cropping the object regions, we padded 8 pixels to each
side of the cropped image and then reshaped the padded im-
age to the size of (64, 64, 3). Thus, we prepared the training
and testing datasets for content-transformation disentangle-
ment in LineMod. We used the same dataset and train-test
splits for our model and the baseline models. The asso-
ciated processing codes are provided in the supplementary
material.

We trained our proposed DualContrast, VITAE [35],
SpatialVAE [3], and Harmony [38] on the LineMod dataset.
We provide qualitative results of image generation with
content-transformation transfer in Fig. 5 obtained with each
method. It is noticeable that both Harmony [38] and Spa-
tialVAE [3] have shown good performance when it comes to
reconstruction. However, these two methods can only per-
form rotation and translation of the objects with explicitly
defined transformations and can not capture complex trans-
formations, e.g., projection, viewpoint change, etc. Com-
pared to SpatialVAE and Harmony, VITAE [35] can per-
form better transformation transfer but performs poor re-

https://bop.felk.cvut.cz/media/data/bop_datasets/lm_train.zip
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Figure 3. Content-transformation transfer results from ablation analysis (a), (b), (c), and (d) shows the results with Harmony [38], Spatial-
VAE [3], VITAE [35], and DualContrast respectively. When generating image grids, the transformation factor is uniform across rows, and
the content factor is uniform across columns. Erroneous generations (both in terms of content and transformation) are marked within red
boxes.

construction. Nevertheless, DualContrast stands out for its
superior ability to perform transformation transfer while en-
suring optimal performance in reconstruction.

A.4.3. Protein Subtomogram Dataset
We created a realistic simulated cryo-ET subtomogram
dataset of 18,000 subtomograms of size 323. The dataset
consists of 4 protein classes of similar sizes- Nucleosomes,
pre-fusion Sars-Cov-2 spike protein, post-fusion Sars-Cov-
2 spike protein, and Fatty Acid Synthase Unit. These pro-
teins are significantly different in terms of their composi-
tion, which determines their different identities. Moreover,
structures for all of these three types of proteins have been

resolved in cellular cryo-ET [8, 11, 21], which makes it fea-
sible to use them for our study. Moreover, cellular cryo-ET
is the primary method to capture these proteins inside the
cells in their native state [9].

For each protein class (except post-fusion spike protein
for which different conformations are not available), we
collected different protein structures from the RCSB PDB
website [32]. RCSB PDB is a web server containing the
structure of millions of proteins. For nucleosomes, we
collected PDB IDs ‘2pyo’, ‘7kbe’, ‘7pex’, ‘7pey’, ‘7xzy’,
and ‘7y00’. All of these are different conformations of
nucleosomes that slightly vary in the spatial arrangement



Figure 4. tSNE embedding plots of content latent factor learned by the unsupervised content-transformation disentanglement methods. (a),
(b), (c), and (d) shows the results for Harmony [38], Spatial-VAE [3], C-VITAE [35], and DualContrast respectively. Overall, DualContrast
shows superior performance.

of its DNA arms around the histone core (Figure 7). For
sars-cov-2 spike proteins, we collected PDB IDs ‘6vxx’,
‘6vyb’, ‘6xr8’, ‘6xra’, ‘6zox’, and ‘6zp0’. Among them,
‘6xra’ is the post-fusion spike protein which is composi-
tionally different from the others. The remaining PDB
structures are highly similar and almost indistinguishable
in 10 Åresolution. For Fatty Acid Synthase (FAS) Unit, we
used PDB IDs ‘8prv’, ‘8ps1’, ‘8ps9’, ‘8psj’, ‘8psm’, ‘8psp’.
They also have highly similar structure and almost indistin-
guishable in 10 Åresolution.

After collecting these 18 PDB structures as PDB files,
we used EMAN PDB2MRC [37] to create density maps (as
MRC file extension) from the PDB files. We create density
maps of size 323 with 1 nm resolution. We then randomly
rotate and translate each density map and create 1000 such
copies. We then convolve the density maps with CTF with
CTF parameters common in experimental datasets (Defo-
cus -5 µm, Spherical Abberation 1.7, Voltage 300 kV). Af-
terward, we add noise to the convolved density maps so that

the SNR is close to 0.1. Thus, we prepare 18, 000 realistic
subtomograms with 3 different protein identities, each with
6 different conformations. We uploaded the entire dataset
anonymously at https://zenodo.org/records/
11244440 under CC-BY-SA license. Sample subtomo-
grams for nucleosomes, spike proteins, and FAS units are
provided in Figure 6, Figure 8, and Figure 9 respectively.
The figures show 3D slice-by-slice visualization for each
conformation of the corresponding protein.

We could not train VITAE [35] on subtomogram datasets
since it did not define any transformation for 3D data. De-
signing CPAB transformation for 3D data by ourselves was
challenging. However, we trained SpatialVAE and Har-
mony as baselines against our subtomogram dataset. Be-
tween these two, spatialVAE could not distinguish the pro-
tein identities with high heterogeneity at all, which is ev-
ident by its embedding space UMAP (Figure ??). Only
Harmony and DualContrast showed plausible result, where
DualContrast showing much superior disentanglement than

https://zenodo.org/records/11244440
https://zenodo.org/records/11244440
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Figure 5. Qualitative results of image generation with content-transformation transfer obtained by (a) Harmony [38], (b) SpatialVAE [3],
(c) VITAE [35], and (d) DualContrast respectively. Harmony and SpatialVAE perform well in reconstruction. but can only perform rotation
and translation with its explicitly defined transformations. On the other hand, VITAE can comparatively perform better disentanglement
with very poor reconstruction results, distorting the images. On the other hand, DualContrast provides superior content-transformation
transfer with optimal performance in reconstruction.

Harmony (Figure ??).

Hydra Training:

For training Hydra [26], we require 2D cryo-EM images

as inputs. To make equivalent inputs from our 3D subtomo-
grams, we took projection sum across depth (z-axis). This
resulted in 18,000 2D grayscale images of size 32× 32. We



Figure 6. 3D slice-by-slice visualization of Nucleosome subtomograms. Each subtomogram is associated with the PDB ID of the original
structure.

set the CTF parameters according to the ground truth during
the simulation. For instance, we used Defocus -5 µm, Defo-
cus Angle 90 degrees, Voltage 300kV, Spherical Abberation
1.7, Amplitude 0.1, and Phase Shift 0 degrees.

Since there are 4 ground truth compositions, we trained
the Hydra model with K=4. We trained it for 130 epochs,
where the first 30 epochs are used for exhaustive pose
search. It took around 15 hours to train on a single NVIDIA
A5000 GPU.

A.4.4. Ablation Study
To evaluate the individual contribution of the contrastive
losses, we conduct both quantitative and qualitative abla-
tion analyses of DualContrast. We trained (1) DualCon-
trast without any contrastive loss, which is basically a VAE
with two latent spaces, (2) DualContrast with only L =
LVAE + Lcon (z), and (3) L = LVAE + Lcon (c). We quali-
tatively and quantitatively evaluated each model.

For (1), the Dscore is almost the same for both c and z
codes, indicating equal predictivity of the digit classes by
both codes. This is obvious given that the model has no
inductive bias to make different codes capture different in-
formation. In model (2), using contrastive loss w.r.t. only z
factor makes it uninformative of the data. Thus, it provides
a small D(c|z) score as desired, but the changing z does not
affect the image generation (Fig. 10). On the other hand,

in the model (3), using contrastive loss w.r.t. only c gives a
less informative c factor, a lower D(c|c) score, and a higher
D(c|z) score, contrary to what is desired. These results in-
dicate that contrastive loss w.r.t to both codes is crucial for
the desired disentanglement.

Furthermore, we investigated whether using only posi-
tive pairs or negative pairs for both codes is sufficient for
disentanglement. Nevertheless, we found that both leads to
suboptimal disentanglement. If only negative pairs are used,
only rotation is disentangled. If only positive pairs are used,
then the transformation code becomes uninformative of the
data, similar to the degenerate solution.

We provide further quantitative results on the abla-
tion study in Figure 10. The image grids show decoder-
generated images where the content factor is used from the
corresponding topmost row, and the transformation factor is
used from the corresponding leftmost column image.
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