
Supplementary Material

1. Ablation on Denoising and Caption Filtering
This section aims to provide more insight into the effects
of denoising and caption filtering on the final performance.
Additionally, we analyze the effects of each enhancement
step by visualizing the influence on the vision-language em-
beddings.

1.1. Effects on Performance
Our enhancement of the original BLIP embeddings involves
iterative semantic clustering followed by denoising using a
Conditional Random Field (CRF) and majority filter. As
shown in Table A2, performing denoising after clustering
significantly improves performance, increasing mIoU from
70.4 to 87.1 on PASCAL VOC [1], confirming the effec-
tiveness of this denoising step. Additionally, we analyze the
impact of caption filtering by evaluating mIoU performance
with this step disabled. The results in Table A2 demonstrate
that caption filtering is essential, regardless of the enhance-
ments applied to the original BLIP embeddings. This em-
phasizes the importance of selecting relevant words from
the decoded text.

1.2. Visualization of Embeddings in BBoost
In Fig. 5, we visualize intermediate 32x32 outputs of
BBoost to better understand what each individual step of
clustering, alignment and denoising achieves. Firstly, Fig. 5
reveals that clustering BLIP embeddings results grouping
pixels into semantic areas. With k = 2, the image is di-
vided an area which includes the cows (in blue) and another
for everything else (green), while for k = 8, various other
objects - such as the pole in purple - get included. At this
stage, the embeddings appear noisy and inconsistent across
all k, which is why the combination of all clusters is so im-
portant. The alignment output shows that certain objects
from a higher k embeddings are now included in those of
lower k embeddings, i.e. the aligned embedding captures a
more extensive list of objects present in the image. Finally,
to further reduce the noise in the embedding, we apply CRF
and a majority filter. We see that the final embedding con-
sists of three unique semantic areas, which are eventually
fed to the text decoder for text generation.

2. Generated/Fixed Vocabulary Similarity
To investigate how similar vocabularies generated with Au-
toSeg are to the fixed ones, we measure how many of the
fixed classes are directly included (with identical wording)
in the generated vocabulary. Additionally, we measure the
average CLIP cosine similarity between the CLIP embed-
ding of each fixed class to the CLIP embedding of the most
similar generated class. Table A1 shows the results. We find

Table A1. Similarity between generated and fixed vocabular-
ies. Generated vocabularies include classes that sufficiently over-
lap with annotated classes.

Dataset Number of Classes Generated % included Avg. CLIP-sim

VOC 20 938 70.0% 85.3%
PC 459 669 37.7% 91.5%
ADE 847 913 41.3% 92.0%
Cityscapes 20 380 75.0% 85.7%

Table A2. BBoost Denoising and Caption Filtering Ablation.
Using both clustering and denoising for feature enhancement re-
sults in the highest mIoU performance on PASCAL VOC [1], as
well as the most compact vocabulary. We use 1 captioning cycle
for simplicity.

Enhancement Type Caption Filtering Vocabulary Size mIoU

Clustering Disabled 4185 3.8
Clustering Enabled 1273 70.4
Clustering + Denoising Disabled 4026 3.8
Clustering + Denoising Enabled 938 87.1

Table A3. Ablation on Mappers. Compared to other approaches
for mapping, LAVE provides more reliable mappings between
auto-vocabulary and target vocabulary classes for comparative
evaluation that uses IoU. Tested on PASCAL VOC [1].

Mapper mIoU [1]

Sentence-BERT [4] 73.9
CLIP [3] 77.5
LAVE (Ours) 87.1

that there is a higher direct overlap with smaller vocabular-
ies, which can potentially be explained by the specificity of
classes in datasets with larger fixed vocabularies. However,
when reflecting on the average CLIP cosine similarity, it
becomes clear that the generated and fixed vocabulary share
high similarity across all datasets. Overall, we conclude that
the coverage of the annotated classes of the four datasets is
sufficient across the generated vocabularies. Similarly, the
generated classes are related to the annotated ones to a great
extent.

3. LLM-based Auto-Vocabulary Evaluator
This section provides more insights into the comparison of
our LLM-based Auto-Vocabulary Evaluator (LAVE) with
other mappers, as well as the pseudocode and text prompts
used for each respective dataset. LAVE is key to enabling
the evaluation of predicted auto-vocabulary classes on pub-
lic benchmarks such as PASCAL VOC [1], as it allows us
to compare with other auto-vocabulary or open-vocabulary
methods which predict a fixed-vocabulary for evaluation.



Clustering

k=2 k=8

…

Denoising

After CRF After Maj. FilterPost-Alignment

Alignment

BLIP 
Embedding

Figure 2. Visualization of Intermediate BBoost Outputs. Intermediate BBoost embeddings, visualized as 32x32 grids, show how vision-
language features are gradually enhanced into semantically regions that are more coherent, which proved more effective for text generation
that preserves locality. After the last step, the embeddings are decoded into text by the text decoder.

3.1. Mapping Comparison
As detailed in the main paper, we initially experimented
with Sentence-BERT [4] and CLIP [3] to map auto-
vocabulary classes to the fixed annotated vocabulary of the
respective dataset. In this approach, we compute the text en-
coding for each class in the auto-vocabulary as well as the
target vocabulary, and select the target class with the high-
est cosine similarity. However, this strategy proved ineffec-
tive, as the mapping often failed for auto-vocabulary classes
with clear target matches—for example, mapping taxi to
road instead of car. To quantitatively evaluate this issue,
we compared the mIoU performance achieved using these
mappings against that of LAVE. Intuitively, poorer map-
pings should lead to lower pixel prediction accuracy and
therefore reduced mIoU. Table A3 demonstrates that, us-
ing the same auto-vocabulary, LAVE achieves an mIoU that
is 13.2 points higher than Sentence-BERT and 9.6 points
higher than CLIP. These results highlight LAVE’s effective-
ness in accurately identifying the correct target class, en-
abling a more reliable evaluation of AVS methods.

3.2. LLM Mapper Pseudocode
The LLM Mapper is tasked with creating a mapping dic-
tionary which maps from auto-vocabulary classes to fixed-
vocabulary classes. The resulting mapping dictionary can
be used during inference to map pixel-level class pre-
dictions belonging to an automatically generated out-of-
vocabulary class to fixed-vocabulary class indices. In
Alg. 1, we detail the procedure to create the mapper.

3.3. LLM Mapping Prompts
The generateDialogs() function in the LLM Mapper
takes a prompt template as one of its inputs. This prompt
template is dependent on the dataset and is used to generate
dialogs to query the LLM with. For PASCAL VOC and
Cityscapes, we explicitly specify the list of categories given
its short length with 20 classes each. For PASCAL Context
and ADE20K, with its 459 and 849 classes respectively, we

rely on the LLM’s knowledge of the datasets. Explicitly
naming each object class from these datasets causes the
LLM to run into memory issues when queried with long
dialogues. We specify the prompt templates for each
respective dataset as follows:

PASCAL VOC and Cityscapes
“To which class in the list <dataset> is <name>
exclusively most similar to? If <name> is not similar to
any class in the list or if the term describes stuff instead
of things, answer with background. Reply in single
quotation marks with the class name that is part of the
list <dataset> and do not link it to any other class
name which is not part of the given list or background.”
where <noun> is the noun to map to the vocabulary and
<dataset> is the list of classes of PASCAL VOC or
Cityscapes.

PASCAL Context and ADE20K
“To which class in the <dataset> dataset is <name> ex-
clusively most similar to? If <name> is not similar to any
class in <dataset> or if the term describes stuff instead
of things, answer with background. Reply in single quo-
tation marks with the class name that is part of <dataset>
and do not link it to any other class name which is not part
of the given list or background.” where <noun> is the
noun to map to the vocabulary and <dataset> is either
‘PASCAL-Context 459’ or ‘ADE20K’.

4. Additional Qualitative Results
In Fig. 3 and 4, we provide additional qualitative results
of AutoSeg and discuss observed capabilities or limitations
in the caption of each figure. Our main insights are that 1)
AutoSeg effectively labels unseen categories; 2) AutoSeg
uses semantically more precise classes for classification; 3)
generated classes that are redundant could end up being seg-
mented.



(a) Success Case. The rare and out-of-vocabulary class name
dinosaur is generated automatically and segmented.

(b) Success Case. AutoSeg is able to accurately classify and
segment classes not present in the dataset, such as the cowboy.

(c) Failure Case. AutoSeg occasionally struggles with indoor
scenes from specific buildings; for example, in this case, a
mosque is mistakenly identified as a temple.

(d) Failure Case. A rug is mistaken for a zebra, potentially
due to rug not being generated as a class on itself.

Figure 3. Additional Qualitative Results. We discuss a selection
of success and failure cases on PASCAL and ADE20K above.

(a) Success Case. While annotations in Cityscapes consider all
car types to be equal, AutoSeg often generates more specific
descriptions, such as the SUV in this image.

(b) Success Case. AutoSeg is able to provide class names
which can be crucial for real-life scenarios, such as hazard
in this example. The standard 20 classes in Cityscapes do not
account for such descriptions.

(c) Failure Case. Occasionally AutoSeg generates general
class names, such as street, which dominate the search space
of the segmentor and cause it to attend more on that class. This
may result in oversegmentation and other class names, such as
car, to be ignored. Such general classes, however, could be
filtered out.

(d) Failure Case. A wall with vegetation is mistaken for a
forest, likely due to overclustering in the clustering process.

Figure 4. Additional Qualitative Results We discuss a selection
of success cases and failure cases on Cityscapes above.



Our results

Figure 7. Qualitative comparison to GroupVit [34]. Despite achieving lower IoU scores, our method can discover objects beyond the
labels in the dataset, such as ‘hay’ and ‘mirror’, and can provide more fine-grained labels, such as ‘stool’.

Table 5. IOU scores comparison between supervised open-
vocabulary segmentation baselines (trained with segmentation la-
bels) and our unsupervised method.

Method PAS-20 PC-59 PC-459

Lseg [19] 47.4 - -
SimBaseline [36] 74.5 - -
ZegFormer [8] 80.7 - -
OpenSeg [11] - 42.1 9.0
OVSeg [21] 94.5 55.7 12.4

Ours - IoUc 20.1 19.6 11.3
Ours - IoUh �1 - 22.7 -

Figure 8. Label reassignment issue. Our predicted labels ‘roof’
and ‘pub’ are correct but are not matched to the ground-truth class
‘building’ during label reassignment.

worse on the more challenging PC-459.

6. Discussion and Analysis

Mismatched text labels during evaluation. Evaluation
in our new setup is still challenging, despite using label
reassignment. For example, in Figure 8, our algorithm breaks
down the ‘building’ ground-truth segment into ‘roof’ and
‘pub’, which are correct. But ST reassignment assigns ‘pub’
to ‘sign’, which is still technically correct but not counted

Figure 9. Failure cases. 1) Classes that have many visually distinct
parts, such as ‘person’, are difficult to reassign labels correctly. 2)
Background regions that share boundaries with salient objects are
still prone to global context leakage. 3) Semantic merging may fail
when the text outputs of the same object give different descriptions.

toward our IoU score for ‘building’. Another problematic
class is ‘person’ whose parts like ‘face’, ‘hair’, ‘shirt’ appear
distinct in CLIP’s space and may not be mapped to ‘person’
(Figure 9). To overcome this challenge, we may need a new
kind of embedding space that understands the hierarchical
nature of object parts.

Global context leakage. Some background segments
that share boundaries with primary objects can be misla-
beled due to the influence of global contexts as shown in
Figure 9. Another problem that can cause context leakage is
the low-resolution 24x24 image grid of CLIP visual tokens.
As we downsample our segment masks to fit this grid, we
lose masking precision and information can leak between
neighboring segments.

9

Figure 7. Qualitative comparison to GroupVit [34]. Despite achieving lower IoU scores, our method can discover objects beyond the
labels in the dataset, such as ‘hay’ and ‘mirror’, and can provide more fine-grained labels, such as ‘stool’.

Table 5. IOU scores comparison between supervised open-
vocabulary segmentation baselines (trained with segmentation la-
bels) and our unsupervised method.

Method PAS-20 PC-59 PC-459

Lseg [19] 47.4 - -
SimBaseline [36] 74.5 - -
ZegFormer [8] 80.7 - -
OpenSeg [11] - 42.1 9.0
OVSeg [21] 94.5 55.7 12.4

Ours - IoUc 20.1 19.6 11.3
Ours - IoUh �1 - 22.7 -

Figure 8. Label reassignment issue. Our predicted labels ‘roof’
and ‘pub’ are correct but are not matched to the ground-truth class
‘building’ during label reassignment.

worse on the more challenging PC-459.

6. Discussion and Analysis

Mismatched text labels during evaluation. Evaluation
in our new setup is still challenging, despite using label
reassignment. For example, in Figure 8, our algorithm breaks
down the ‘building’ ground-truth segment into ‘roof’ and
‘pub’, which are correct. But ST reassignment assigns ‘pub’
to ‘sign’, which is still technically correct but not counted

Figure 9. Failure cases. 1) Classes that have many visually distinct
parts, such as ‘person’, are difficult to reassign labels correctly. 2)
Background regions that share boundaries with salient objects are
still prone to global context leakage. 3) Semantic merging may fail
when the text outputs of the same object give different descriptions.

toward our IoU score for ‘building’. Another problematic
class is ‘person’ whose parts like ‘face’, ‘hair’, ‘shirt’ appear
distinct in CLIP’s space and may not be mapped to ‘person’
(Figure 9). To overcome this challenge, we may need a new
kind of embedding space that understands the hierarchical
nature of object parts.

Global context leakage. Some background segments
that share boundaries with primary objects can be misla-
beled due to the influence of global contexts as shown in
Figure 9. Another problem that can cause context leakage is
the low-resolution 24x24 image grid of CLIP visual tokens.
As we downsample our segment masks to fit this grid, we
lose masking precision and information can leak between
neighboring segments.

9

Figure 7. Qualitative comparison to GroupVit [34]. Despite achieving lower IoU scores, our method can discover objects beyond the
labels in the dataset, such as ‘hay’ and ‘mirror’, and can provide more fine-grained labels, such as ‘stool’.

Table 5. IOU scores comparison between supervised open-
vocabulary segmentation baselines (trained with segmentation la-
bels) and our unsupervised method.

Method PAS-20 PC-59 PC-459

Lseg [19] 47.4 - -
SimBaseline [36] 74.5 - -
ZegFormer [8] 80.7 - -
OpenSeg [11] - 42.1 9.0
OVSeg [21] 94.5 55.7 12.4

Ours - IoUc 20.1 19.6 11.3
Ours - IoUh �1 - 22.7 -

Figure 8. Label reassignment issue. Our predicted labels ‘roof’
and ‘pub’ are correct but are not matched to the ground-truth class
‘building’ during label reassignment.

worse on the more challenging PC-459.

6. Discussion and Analysis

Mismatched text labels during evaluation. Evaluation
in our new setup is still challenging, despite using label
reassignment. For example, in Figure 8, our algorithm breaks
down the ‘building’ ground-truth segment into ‘roof’ and
‘pub’, which are correct. But ST reassignment assigns ‘pub’
to ‘sign’, which is still technically correct but not counted

Figure 9. Failure cases. 1) Classes that have many visually distinct
parts, such as ‘person’, are difficult to reassign labels correctly. 2)
Background regions that share boundaries with salient objects are
still prone to global context leakage. 3) Semantic merging may fail
when the text outputs of the same object give different descriptions.

toward our IoU score for ‘building’. Another problematic
class is ‘person’ whose parts like ‘face’, ‘hair’, ‘shirt’ appear
distinct in CLIP’s space and may not be mapped to ‘person’
(Figure 9). To overcome this challenge, we may need a new
kind of embedding space that understands the hierarchical
nature of object parts.

Global context leakage. Some background segments
that share boundaries with primary objects can be misla-
beled due to the influence of global contexts as shown in
Figure 9. Another problem that can cause context leakage is
the low-resolution 24x24 image grid of CLIP visual tokens.
As we downsample our segment masks to fit this grid, we
lose masking precision and information can leak between
neighboring segments.

9

Our results

Figure 5. Ablation results. Comparison between the results from different segment encoding methods. The crop-and-mask baseline often
outputs text labels that is not relevant to segments/input images. Our method without global subtraction suffers from global leak and often
mislabels non-salient objects. Without semantic merging, text outputs look good, but it tends to over-segment.

Table 1. Quantitative results on 1,000 random images from PAS-
59’s validation split. We use constants (�SBERT and �CLIP) and multi-
ple human verification scores (h) for thresholding.

Text-text reassign. Segment-text reassign.
Threshold: const. h � 1 const. h = 3 h � 2 h � 1

IoU 11.2 11.0 19.3 14.2 20.9 22.7
Recall 10.3 9.8 18.0 13.2 18.0 19.4

Table 2. Distribution of human rating scores on the quality of the
predicted labels (0: incorrect, 1: partially correct, 2: correct but too
general/specific, 3: correct).

Human rating 0 1 2 3

% of labels 36.0 20.8 23.9 19.3

5.2. User study

We evaluate the quality of predicted labels using human
evaluation. Each segment and its predicted label were shown
to three distinct human evaluators, who were asked to rate
how well the label describes the segment on a scale of 0-3,
similar to the process in Section 4.2 except we show the
predicted label Ti instead of the reassigned label T �

i . Full

details and the score definitions are in Appendix F.

Table 2 shows that human evaluators found about 43% of
our results to be ‘correct’ or ‘correct but too generic/specific’
and 64% to be at least ‘partially correct.’

We provide example images and their scores given by
the human evaluators in Figure 6. According to the result,
most of our score-0 labels are single-word adjectives, such
as ‘black’, or collective nouns, such as ‘group’. Another
kind of score-0 labels is caused by biases toward stereotyp-
ical appearances of objects, such as when a pet dog was
mislabeled as ‘stray’ due to its shabby appearance (row 4).
Some of score-1 labels correspond to descriptions or abstract
nouns that are related to their segments but may not fully
describe them, such as ‘reflection’, ‘dining’, and ‘sunny’,
and some other labels describe specific but incorrect types of
objects, such as ‘uber’ or ‘military’. Most of our score-2 la-
bels are nearly accurate, but the segments may incompletely
or excessively cover the referred objects, such as ‘lush moss’
and ‘few puppies’ (row 2). Most of our score-3 labels accu-
rately represent their segments, such as ‘plane’, and they can
be descriptive even on background objects, such as ‘sandy
beach’ and ‘crowd observing’, unlike labels from traditional
segmentation methods.

7

Ze
ro
Se

g
Au

to
Se

g

Figure 5. Qualitative Comparisons. We provide qualitative comparisons between AutoSeg (bottom row) with ZeroSeg (top row). Our
main take-away is that AutoSeg has sharper object boundaries and often generates target classes that are closer to the object’s actual label.
However, ZeroSeg introduces interesting contextual semantics, such as former, party or sleeping. Depending on the use case, this might
be valuable information to predict.

Algorithm 1 LLM Mapper
Require: nouns, dataset vocabulary, llm batch size,

prompt template, LLM
all responses, map dict, skipped initialize()
for batch in split(nouns, llm batch size) do

dialogs generateDialogs(batch, prompt template)
batch responses LLM(dialogs)
store(all responses, (batch responses, batch))

end for
for (batch response, batch) in all responses do

for (response, noun) in (batch response, batch) do
answer parseResponse(response)
common intersect(answer, dataset vocabulary)
updateDict(map dict, noun, common)
updateSkipped(skipped, noun, common)

end for
end for
for key in map dict do

if key is in vocabulary then
map dict[key] key

end if
if key is in skipped then

skipped removeItem(skipped, key)
end if

end for
for skipped key in skipped do

map dict[skipped key] “background”
end for
return map dict


	Supplementary Material
	Ablation on Denoising and Caption Filtering
	Effects on Performance
	Visualization of Embeddings in BBoost

	Generated/Fixed Vocabulary Similarity
	LLM-based Auto-Vocabulary Evaluator
	Mapping Comparison
	LLM Mapper Pseudocode
	LLM Mapping Prompts

	Additional Qualitative Results

