
A. Implementation and Training Details

A.1. Object Templates Rendering

We use BlenderProc[6] for template generation and use the
camera intrinsics from the TUDL dataset. We scale each
model and render 42 viewpoints distributed on an icosphere.
The radius of this viewsphere is dynamically determined
based on the size of the object, ensuring it remains within
the camera’s field of view. We add directional lighting in
such a way that there are shadows that show the geom-
etry of the model. For each rendered view, we generate
RGB images and object masks, crop and resizes them to a
standardized resolution of 224×224, and calculates bound-
ing boxes around the object. The rendered images, masks,
bounding boxes, 3D point clouds of the object, camera in-
trinsics, and camera poses are then saved into a compressed
NumPy archive for each model. Please refer to Figure 7
for a visualization of templates rendered for objaverse [5]
objects.

A.2. Variational Autoencoder (VAE) Training De-
tails

We train the VAE on binary masks from the same training
dataset as we train OC-DiT and tune the hyperparameters,
such that the latent has zero mean and standard deviation
1.0. The training procedure focuses on learning a robust
latent representation of object masks using a convolutional
variational autoencoder with attention mechanisms. Data is
loaded according to the dataset in 4.1. However, we load
all templates and generate masks to increase the number of
training samples per disk operation. Extensive data aug-
mentation is performed using torchvision’s transforms.v2.
This includes random horizontal and vertical flips, random
affine transformations (rotation, translation, scaling), and
random perspective transformations. These augmentations
aim to improve the model’s generalization capabilities. The
latent space has a dimensionality of 64 channels, and the
model processes single-channel mask images as both in-
put and output. During the forward pass, augmented mask
images are fed into the encoder of the VAE. The encoder
produces a latent representation, from which the decoder
reconstructs the mask. The training process utilizes the Ev-
idence Lower Bound (ELBO) loss, with a beta parameter of
10−5 to control the KL divergence term. This balances re-
construction accuracy and latent space regularization. Op-
timization is performed using the Adam optimizer with a
learning rate of 3 × 10−4 and no weight decay. A learn-
ing rate scheduler is employed, featuring a linear warmup
followed by cosine annealing. The training proceeds in
batches of size 128 for 70 epochs, with the learning rate
adjusted by the scheduler.

A.3. OC-DiT Training Details and Hyperparame-
ters

For each sample of the dataset that we load, we have to re-
duce the number of objects per sample to the desired num-
ber. We only load the templates for the objects that we se-
lect in the following process. We sample a random point
in the image and calculate a weighting scalar dependent on
the distance to the sampled point. We use this weighting to
randomize the different objects that we keep in the sample.
This allows us to bias the sampling process to choose ob-
jects that are closer to one another, resulting in better train-
ing signal. OC-DiT leverages a pre-trained variational au-
toencoder (VAE) for latent space operations that has to be
pre-trained.
coarse is trained on 252 × 336 images and 288 × 384
segmentations (18 × 24 patches), conditioned on multiple
objects per sample. The decoder used 10 blocks with a hid-
den size 1152, and 12 attention heads. Training lasted 150
epochs, with 1000 steps per epoch and batch size 16 on 2
A100 GPUs, using the Adam optimizer with learning rate of
2 · 10−4), linear warmup for 2000 steps, and cosine anneal-
ing after 72%). Data augmentation included random crops
and jittered bounding boxes around all conditioning objects.
refine is trained on 224 × 224 images and 256 × 256
segmentations (16× 16 patches), conditioned on single ob-
jects. The decoder uses 10 blocks, with a hidden size 1152,
and 12 attention heads. Training lasted 200 epochs, with
1000 steps per epoch, and batch size 128 on 2 A100 GPUs,
using the Adam optimizer with learning rate 1 · 10−4, lin-
ear warmup for 2000 steps, and cosine annealing after 72%.
Training data consists of cropped, jittered object regions.

In this work we use 12 template views due to VRAM
constraints, but any number of templates can be used. We
train the model on 8 object classes per sample which is a
tradeoff between number of objects per sample and compu-
tational overhead. The models object capacity is 16. We
randomly crop the image with a probability of 0.7 with
a scale of [0.5, 1.1] meaning that the image is randomly
cropped to a size by this scale. If we do not randomly
crop the image, we perform a tight crop around all object
instances that we jitter. The Adam optimizer is employed
with a learning rate of 2e − 4 and no weight decay. We
use a linear warmup for the learning rate for 2000 gradi-
ent steps and a cosine annealing after 0.72% of the training
is complete. The training uses a batch size of 8 per GPU.
We apply two types of data augmentations, RGB augmen-
tations with a probability of 0.9 and background augmen-
tations with a probability of 0.2. The RGB augmentations
entail blur, sharpness, contrast, brightness and a basic color
augmentation. We use an iterative dataset and each epoch
is complete after 1000 training batche with a maximum of
120 epochs. Please refer to Figure 10 and Figure 11 for
visualization of the diffusion process of a trained model.



Figure 7. Templates rendered for objaverse [5] objects.

A.4. Positional Encodings
We evaluate the following techniques for scaling object
queries, addressing the critical challenge of adapting mod-



els trained on a specific number of objects N train
O to handle a

potentially different number of objects at inference (N test
O ).

We delve into various approaches, each visualized in Fig-
ure 8.

(i) Baseline 1: Sequential Inference after Training on
Limited Objects. The model is trained on N train

O ob-
jects. Subsequently, during inference, the model pro-
cesses each of the N test

O object chunks individually,
effectively performing a series of independent infer-
ences. This method tests the model’s ability to gen-
eralize to unseen objects within the fixed training ca-
pacity without any explicit scaling mechanisms. A
clear downside is that during self-attention, not all
queries can attend to one another. This leads to sce-
narios where we can get multiple for one segment of
the image.

(ii) Baseline 2: Direct Training with Target Object
Count. As another baseline, this method directly
trains the model on a dataset that precisely matches
the number of objects anticipated at inference, N test

O .
This provides a performance ceiling, showcasing the
optimal results achievable when the training and in-
ference object counts are perfectly aligned. It allows
us to assess the performance loss when object counts
are not aligned. However, as we see in the results,
due to training dynamics this baseline performs worse
than other positional encoding methods.

(iii) Test-Time Positional Encoding Interpolation: Adapt-
ing to Varying Object Counts at Inference. This
technique addresses the mismatch between N train

O and
N test

O by dynamically adjusting the positional encod-
ings during the inference phase. Specifically, the po-
sitional encodings learned during training for N train

O
objects are interpolated to accommodate the N test

O ob-
jects. This allows the model to handle a different
number of objects without requiring retraining, offer-
ing flexibility in deployment scenarios.

(iv) Random Interval Training: Enhancing Robustness
through Variable Subsets. This method trains the
model with a positional encoding capacity sufficient
to handle the maximum number of objects, N test

O .
However, during each training iteration, only a ran-
dom, contiguous interval of length N train

O is utilized.
This approach aims to improve the model’s robust-
ness and generalization by exposing it to various sub-
sets of the larger positional encoding space, prevent-
ing overfitting to a specific object ordering.

(v) Random Interpolation Training: Leveraging Interpo-
lation for Flexible Object Handling. Similar to the
previous technique, this method trains the model with
a positional encoding capacity designed for N test

O ob-
jects. However, instead of using contiguous intervals,
random intervals of lengths greater than N train

O are se-

lected. Subsequently, the positional encodings within
these intervals are interpolated down to N train

O during
training.

(vi) Random Permutation Training: Promoting Gener-
alization through Diverse Object Orderings. This
method also leverages a positional encoding capac-
ity designed for N test

O objects. During each training
iteration, a random subset of N train

O indices is selected
from the full range of N test

O indices, effectively per-
muting the object order. This random permutation of
indices aims to improve the model’s generalization by
exposing it to diverse orderings of the input objects,
mitigating biases related to specific object arrange-
ments.

A.5. Common Failure Modes of coarse
In Figure 10 and Figure 11 we showcase a few randomly
selected samples from the YCBV, HB, and LMO datasets
using the noise discretizations ρ = 5 and ρ = 15. The
top row of Figure 10 shows a very common failure mode
for YCBV. The clamps, of which there are multiple, only
differ in size. To to our template rendering scheme, where
we crop closely around the foreground, this change in size
is not reflected. Hence, our model has no basis to compare
and differentiate the two.

Another common failure mode can be seen in the bot-
tom row of Figure 11 on the LMO dataset. The object are
generally quite small, most likely smaller than the average
object size in our training data. This leads to some instances
of the ensemble to estimate wrong instances which results
in multiple instances per object in some cases. These in-
stances deteriorate the performance but since the objective
of the coarse model is a high recall, we leave them in and
let the refinement model compare which segmentation fits
best to the model.

A.6. Training Datasets
To train our diffusion models, we generate two new
datasets, one based on the 3D models of Google Scanned
Objects [9] and a subset of objects from the Objaverse [5]
dataset, picked from the lvis and staff-picked annotations.
We use Blenderproc [6] for rendering and base the render-
ing pipeline closely to the scripts used to generate training
datasets for the BOP challenge. For each scene, we create
a basic room environment and set up initial lighting from
both a large ceiling plane and a point source. We randomly
select a varying number of objects from our collection, load
them into the virtual scene, and apply randomized material
properties, such as roughness and specularity. To ensure re-
alistic arrangements, these objects are enabled for physics
simulation, allowing them to settle naturally on surfaces and
against each other after an initial random placement. Light-
ing elements are also randomized in terms of color, strength,



Training

Capacity

Testing

a) test-time interp.

Training

Capacity

Testing

b) random interval

Training

Capacity

Testing

c) random interpolate

Training

Capacity

Testing

d) random permuation

Training

Capacity

Testing

e) fixed length

Figure 8. Positional encodings and adaption methods ablated in this paper. a) we train a model with a fixed capacity and interpolate the
positional embedding during inference to the desired size. b) we train a model with a higher capacity than the number of training objects
and randomly select intervals during training. c) same as b) but we sample intervals that are larger than the training number of objects
and interpolate the positional encoding to number of training objects d) we train the model with a higher capacity and randomly select
positional codes e) we train the model directly on the increased number of objects.

(a) Full image (b) 6 crops (c) 11 crops (d) Full image guided

Figure 9. Visualization of test-time spatial augmentations. (a) uses the full image as input, (b) adds 5 spatial crops to the full image, each
smaller by a fixed number of pixels and shifted (c) adds another 5 spatial augmentations by adding more crops smaller, and (d) illustrates
the guided spatial augmentation. We use the previous model prediction to generate a tight bounding box covering all estimates that we run
a diffusion for in a second step.

and position, and various textures are randomly applied to
the room’s surfaces to add visual diversity. Once the objects
are settled, we generate multiple camera viewpoints for the
scene, ensuring that the camera has an unobstructed and in-
teresting view of the objects. Finally, for each valid camera
pose, it renders both color images and depth maps, along
with annotations for the objects’ positions and orientations,
all of which are then saved in the BOP dataset format. Af-
ter each scene is rendered and its data recorded, the objects
are removed to prepare the environment for the next scene,
allowing for the generation of a large number of unique syn-
thetic scenarios.



Figure 10. Some examples of the generative process using ρ = 15 for noise discretization.



Figure 11. Some examples of the generative process using ρ = 5 for noise discretization.


	Implementation and Training Details
	Object Templates Rendering
	Variational Autoencoder (VAE) Training Details
	OC-DiT Training Details and Hyperparameters
	Positional Encodings
	Common Failure Modes of coarse
	Training Datasets


