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1. Limitations in the Single-Camera Single-
Projector Setup

Fig. 1 shows the results of applying the conventional Tur-
boSL method [2] to a static object under a single-camera,
single-projector setup with three phase-shifting patterns and
a frequency of 32. As shown in the figure, errors similar to
unwrapping failures can be observed. Similar errors were
also found in the case of four phase-shifting patterns. These
results indicate that reducing the number of patterns be-
low four is challenging in a single-camera, single-projector
setup when using standard phase-shifting patterns.

2. Network Architecture
For multiresolution hash encoding [3], the number of hash
feature grids was 16, the feature size per level was 2, the
resolution of the coarsest grid was 16, the scale factor per
level was 1.45, and smoothstep was used for interpolation.
The MLP consisted of two hidden layers, each with a width
of 64, and used ReLU activation. Sigmoid activation was
applied to the outputs for residual and reflectance, whereas
no activation function was used for the outputs of the SDF
and displacement field.

3. Training Time
Using 70 % of the CUDA cores on an NVIDIA RTX 6000
Ada GPU, training 10,000 iterations took approximately 16
minutes. We acknowledge that the training time is rela-
tively long; however, our method requires only three input
patterns and achieves accuracy that surpasses existing real-
time methods, making it particularly valuable for offline ap-
plications such as detailed shape analysis on recorded video
sequences.

To shorten the training time, we plan to initialize the
network using shapes estimated from conventional phase-
shifting techniques or learning-based monocular depth-
estimation methods, which can accelerate convergence. For
sequential inputs, training time can be further reduced by

using the parameters from the previous frame as initializa-
tion. In addition, we plan to incorporate a coarse-to-fine
ray-casting strategy to decrease the number of samples per
ray and to improve per-ray efficiency by adopting lighter
encoding schemes and more compact MLP architectures.

4. Overview of Comparison Methods

In addition to the explanations in Sec. 7 in the main paper,
Table 1 summarizes the differences among the comparison
methods used in the evaluation experiments in that section.

For the single-camera case, the experimentally optimal
parameters were used: the L1 and L2 norms for Lpro2cam
were set to 1.5 and 15, respectively.

When using standard phase-shifting patterns under the
Cam1-TurboSL condition, the estimated shape exhibited
large errors with both three and four patterns. As discussed
in Sec. 1 of the supplementary material, this issue arises
due to the limitations outlined there. Therefore, as an al-
ternative sinusoidal pattern, we included a condition using
four micro-phase-shifting (MPS) patterns [1].

Furthermore, for our two-camera setup (Cam2), we
confirmed that high-accuracy shape estimation could be
achieved with a minimum of three patterns. Therefore, we
did not evaluate the four-pattern MPS method under this
condition.

Additionally, in PS-Cam2-Standard, PS-Cam2-Weise,
and PS8-Cam2-Zhang, the number of phase cycles k(c)
(shown in Eq. (3) in the main paper) is assumed to be ob-
tained from geometric constraints using two cameras, as
in previous studies [4, 5]. In our experiments, however,
ground-truth values of k(c) were directly provided instead
of being estimated from geometric constraints.

5. Additional Comparisons

In the experiments described in Sec. 7 in the main paper, we
conducted a quantitative evaluation of the objects undergo-
ing uniform motion. In this section, we present additional
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Table 1. Summary of the differences in comparison methods from Sec. 7. The numbers in parentheses under the ’Pattern’ column indicate
the number of patterns.

Name Pattern Number of cameras Method Motion compensation Neural network
ALC3-Cam1-TurboSL A La Carte (3) 1 TurboSL ✓
MPS4-Cam1-TurboSL Micro phase shift (4) 1 TurboSL ✓
PS3-Cam2-Standard Phase shift (3) 2 Standard phase shift

PS3-Cam2-Weise Phase shift (3) 2 Weise’s phase shift ✓
PS8-Cam2-Zhang Phase shift (8) 2 Zhang’s phase shift ✓

ALC3-Cam1-w/ DF A La Carte (3) 1 Ours (Partial) ✓ ✓
MPS4-Cam1-w/ DF Micro phase shift (4) 1 Ours (Partial) ✓ ✓

ALC3-Cam2-w/o DF A La Carte (3) 2 Ours (Partial) ✓
PS3-Cam2-w/o DF Phase shift (3) 2 Ours (Partial) ✓
ALC3-Cam2-w/ DF A La Carte (3) 2 Ours (Partial) ✓ ✓
PS3-Cam2-w/ DF Phase shift (3) 2 Ours (Full) ✓ ✓
PS3-Cam3-w/ DF Phase shift (3) 2 Ours (Full) ✓ ✓

Ground Truth Measured 3D shape

Figure 1. Reconstructed 3D shape using three sinusoidal phase-
shifting patterns with the conventional method [2].

results demonstrating the effectiveness of our method for
objects with accelerated motion. Table 2 shows the results
when the object’s velocity in the n-th pattern is set to un
mm/frame for a given parameter u. Even under this mo-
tion condition, the proposed method using standard phase-
shifting patterns achieves high accuracy.

6. Additional real-world experiments
This section presents additional real-world experiments.
Figs. 2–13 show the captured images from two cameras,
along with the estimated results, including residuals, re-
flectance, displacement fields, and the reconstructed 3D
shapes. Figs. 14–15 show the 3D shape reconstruction re-
sults for video sequences.

References
[1] Mohit Gupta and Shree K. Nayar. Micro Phase Shifting.

In 2012 IEEE Conference on Computer Vision and Pattern
Recognition, pages 813–820, 2012. 1

[2] Parsa Mirdehghan, Maxx Wu, Wenzheng Chen, David B. Lin-
dell, and Kiriakos N. Kutulakos. TurboSL: Dense Accurate
and Fast 3D by Neural Inverse Structured Light. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 25067–25076, 2024. 1, 2

[3] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM transactions on graphics, 41(4):
1–15, 2022. 1

[4] Thibaut Weise, Bastian Leibe, and Luc Van Gool. Fast 3D
Scanning with Automatic Motion Compensation. In IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1–8, 2007. 1

[5] Geyou Zhang, Ce Zhu, and Kai Liu. Binomial self-
compensation for motion error in dynamic 3d scanning. In
European Conference on Computer Vision (ECCV), page
205–221, 2024. 1



Table 2. MAE for different accelerations. Bold and underline indicate the best and second-best results for each acceleration, respectively.
The top five rows represent conventional methods, while the bottom seven rows correspond to the proposed methods.

Acceleration u (mm/frame2) -8 -4 -2 -1 0 1 2 4 8
ALC3-Cam1-TurboSL 21.3598 3.7988 0.9523 0.6810 0.5403 0.5919 0.8353 7.1506 24.0867
MPS4-Cam1-TurboSL 30.2778 13.6866 1.6048 1.0369 0.5031 0.7728 3.3795 2.9025 12.0904
PS3-Cam2-Standard 3.3261 1.8443 1.0295 0.6252 0.2724 0.4486 0.7576 1.6102 3.8133

PS3-Cam2-Weise 2.1688 1.4896 0.9177 0.5822 0.2606 0.2750 0.5619 0.9822 1.7980
PS8-Cam2-Zhang 9.9618 7.0769 3.1561 1.5522 0.2728 1.1814 2.7799 7.1996 10.0063

ALC3-Cam1-w/ DF 9.7854 0.8719 0.6656 0.5970 0.5824 0.6784 0.6588 0.7506 5.6192
MPS4-Cam1-w/ DF 19.5895 6.0639 0.9022 0.7263 0.6770 0.8686 0.9871 1.1934 24.4049
ALC3-Cam2-w/o DF 3.3463 1.7321 0.9617 0.6402 0.4195 0.5685 0.8191 1.4045 2.9924
PS3-Cam2-w/o DF 2.6758 1.4536 0.8168 0.4877 0.2351 0.4430 0.6043 0.8444 2.3782
ALC3-Cam2-w/ DF 0.5710 0.4495 0.3970 0.3940 0.4031 0.4347 0.3880 0.4729 0.5205
PS3-Cam2-w/ DF 1.5521 0.4233 0.2456 0.2179 0.2208 0.2127 0.2816 0.3142 0.5354
PS3-Cam3-w/ DF 1.0791 0.3892 0.2615 0.2294 0.2229 0.2313 0.2512 0.2556 0.4211

Figure 2. Additional results of the real-world experiment. Captured images from camera 1 and camera 2 under uniform lighting and three
phase-shifting patterns (first and second rows), and residual (brightness ×5), reflectance, and displacement field projected to the camera 1
view and the reconstructed 3D shape after 10,000 training iterations (third row).



Figure 3. Additional results of the real-world experiment. Captured images from camera 1 and camera 2 under uniform lighting and three
phase-shifting patterns (first and second rows), and residual (brightness ×5), reflectance, and displacement field projected to the camera 1
view and the reconstructed 3D shape after 10,000 training iterations (third row).

Figure 4. Additional results of the real-world experiment. Captured images from camera 1 and camera 2 under uniform lighting and three
phase-shifting patterns (first and second rows), and residual (brightness ×5), reflectance, and displacement field projected to the camera 1
view and the reconstructed 3D shape after 10,000 training iterations (third row).



Figure 5. Additional results of the real-world experiment. Captured images from camera 1 and camera 2 under uniform lighting and three
phase-shifting patterns (first and second rows), and residual (brightness ×5), reflectance, and displacement field projected to the camera 1
view and the reconstructed 3D shape after 10,000 training iterations (third row).

Figure 6. Additional results of the real-world experiment. Captured images from camera 1 and camera 2 under uniform lighting and three
phase-shifting patterns (first and second rows), and residual (brightness ×5), reflectance, and displacement field projected to the camera 1
view and the reconstructed 3D shape after 10,000 training iterations (third row).



Figure 7. Additional results of the real-world experiment. Captured images from camera 1 and camera 2 under uniform lighting and three
phase-shifting patterns (first and second rows), and residual (brightness ×5), reflectance, and displacement field projected to the camera 1
view and the reconstructed 3D shape after 10,000 training iterations (third row).

Figure 8. Additional results of the real-world experiment. Captured images from camera 1 and camera 2 under uniform lighting and three
phase-shifting patterns (first and second rows), and residual (brightness ×5), reflectance, and displacement field projected to the camera 1
view and the reconstructed 3D shape after 10,000 and 20,000 training iterations (third and fourth rows).



Figure 9. Additional results of the real-world experiment. Captured images from camera 1 and camera 2 under uniform lighting and three
phase-shifting patterns (first and second rows), and residual (brightness ×5), reflectance, and displacement field projected to the camera 1
view and the reconstructed 3D shape after 10,000 and 20,000 training iterations (third and fourth rows).



Figure 10. Additional results of the real-world experiment. Captured images from camera 1 and camera 2 under uniform lighting and three
phase-shifting patterns (first and second rows), and residual (brightness ×5), reflectance, and displacement field projected to the camera 1
view and the reconstructed 3D shape after 10,000 and 20,000 training iterations (third and fourth rows).



Figure 11. Additional results of the real-world experiment. Captured images from camera 1 and camera 2 under uniform lighting and three
phase-shifting patterns (first and second rows), and residual (brightness ×5), reflectance, and displacement field projected to the camera 1
view and the reconstructed 3D shape after 10,000 and 20,000 training iterations (third and fourth rows).



Figure 12. Additional results of the real-world experiment. Captured images from camera 1 and camera 2 under uniform lighting and three
phase-shifting patterns (first and second rows), and residual (brightness ×5), reflectance, and displacement field projected to the camera 1
view and the reconstructed 3D shape after 10,000 and 20,000 training iterations (third and fourth rows).



Figure 13. Additional results of the real-world experiment (Pokémon, Sobble). Captured images from camera 1 and camera 2 under
uniform lighting and three phase-shifting patterns (first and second rows), and residual (brightness ×5), reflectance, and displacement field
projected to the camera 1 view and the reconstructed 3D shape after 10,000 and 20,000 training iterations (third and fourth rows).

Figure 14. 3D shape reconstruction results for a video sequence, originally captured every 2 ms, with five frames presented at 72 ms
intervals.

Figure 15. 3D shape reconstruction results for a video sequence, originally captured every 2 ms, with five frames presented at 72 ms
intervals.
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