After the Party: Navigating the Mapping From Color to Ambient Lighting

Supplementary Material

In the supplementary material, we first provide more im-
plementation details of our work in Sec. 1. We also pro-
vide visual comparisons on different sequences with differ-
ent direct lighting system variants in Sec. 2. In addition,
we provide and discuss failure cases and limitations of the
proposed work in Sec. 3. Sec. 4 provides general remarks
regarding the study expansion in Ambient Lighting Normal-
ization (ALN), the posed challenges, and how they impact
the proposed solution.

1. Benchmarking setup

The methods evaluated for the benchmark summarized in
Tab. 3 (main manuscript) were trained using the publicly
available implementations, adopting the default parameters,
and procedures for supervision, as described in the pub-
lished works. We limited the set of compared methods to
works for which the codes (including the training scripts
or parameter configurations) and the evaluated pretrained
models are publicly available. In the case of the AMBI-
ENT6k benchmark [6], the settings described by the authors
were adopted for the evaluation of the different RLN? vari-
ants as part of their benchmark.

Training data: The models were trained with data sam-
pled from the training split of the introduced CL3AN
dataset. The model uses the RGB representation of the data,
with images resized to a resolution of 1440x 1080px to fit in
the requirements of the remote storage, especially in terms
of data loading latency. All compared methods are then
trained on image patches randomly cropped from the in-
put image, with a resolution of 960x960px selected as the
size of the crop. The resolution is gradually increased to
1080x 1080px as training progresses. Regarding data aug-
mentation, a mixture of random rotations and random flips
represent the core of this component. The procedure is com-
pleted by the addition of the mixup augmentation [2], in
which the input images are linearly blended to the ground-
truth images through a parameter A ~ Beta(a = 0.2).
Given the nature of the training data, in which the input im-
ages are acquired under RGB direct lighting, and the refer-
ence images represent white ambient-lit equivalents of the
same scene, the mixup will add variance in terms of color
hue, but especially in terms of color saturation.

RLN? Optimization parameters: Consistent with the pre-
vious benchmarks [6], the standard L1 loss was set as the
optimization objective for the Adam algorithm [4]. The
learning rate used was set to 0.0002, with a cyclic cosine
scheduler updating the learning rate, under two periods split
between 10000 and 20000 data batches seen in training.

The length of the training procedure is set to 30000 data
batches, with a batch of 15 image crops. The batch size
value was chosen as the maximum possible value given the
48GB VRAM of the used GPU, and the requirements of
RLNZ-Lf.

Evaluation: As the evaluation was performed on a local
NVIDIA 4090Ti GPU, with 24 GB available VRAM, the
original 24 MP images were resized to 1440x 1080, due
to computational restrictions. The reported evaluations are
performed consistently at this image resolution. The values
for PSNR and SSIM are calculated after the restored im-
ages are mapped to byte-sized RGB values, before saving
them to local storage. In the case of LPIPS [7], the default
deployment with image tensors in the [—1, 1] range is used
to compare the restored variants of the input images to the
reference equivalents. The shift in representation domain,
from the [0, 1] interval to [—1, 1] is standard for the AlexNet
feature extractor [5].

2. Additional Qualitative Results

Fig. A provides for visual evaluation additional equivalent
more scenes from the test split of the CL3AN dataset. Note
that since the data is acquired under controlled laboratory
conditions, there are no ethics concerns. Each image also
emphasizes a representative region through a 2x upscaled
patch. The upscaling method uses the nearest interpolation
algorithm, to avoid introducing new colors at the restored
image level. Here, the behavior of the top three perform-
ing models can be followed, under changing lighting condi-
tions, including white-aligned direct lighting (setup similar
to AMBIENT6K [6]) (rows 1 and 5), and various effects
under multiple RGB directional lights. On rows 2 and 6,
we can observe restored images, with inputs under the ef-
fect of consistent color shift, while rows 3, 4 7, and 8 show
equivalent inputs under the effect of multiple color direct
lighting. When HINet [3] shows a stronger influence of the
incoming light color at the input level in its renderings, the
outputs of NAFNet [1] are affected by a significant level of
local color artifacts and remaining self-shadows. IFBlend
[6] and the proposed RLN2-Lf produce improved quality
renderings, with [FBlend showing inconsistent colors in the
case of some surfaces. Note that the inconsistencies seem
systematic, regardless of the incoming lighting setup that
describes the color shift at the input image level. On rows
7-8, IFBlend [6] and RLN2-Lf show better-aligned rendered
colors, and significantly lower self-shadows. Moreover,
RLNZ2-Lf has an edge over IFBlend [6] in terms of rendered
highlights.
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Figure A. Additional Qualitative Comparisons on different scenes from test split of the CL3AN dataset. Best viewed in the electronic

version.

To showcase the generalization ability of the proposed
RLNZ2-Lf model, in Fig. B we compare its renderings
against HINet [3] and NAFNet [1] on a set of DeepAl
text2image generated images' representing different con-
tents under single-color or multi-color direct lighting. Here,

lgeepai.org/machine-learning-model/text2img

we can observe RLN2-Lf having a clear advantage over
HINet [3] and NAFNet [1] in terms of color shifts still
present in their outputs. Under non-natural shadows (row
1), RLN2-Lf can reconstruct the ambient-lit images in sharp
details and improve lighting uniformity. On the second raw,
RLNZ2-Lf shows an improved ability in terms of color ren-
dering, with the restored ambient-lit image being character-
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Figure B. Additional Qualitative Comparisons on various Al-generated' images, representing objects subjected to color direct lighting.

ized by a naturally rendered color palette and limited influ-
ence in terms of artifacts visible in the output image. On
rows 3 and 4, RLN2-Lf shows an advantage over IFBlend
[6] with better handling of incoming light intensity, lower
self-shadows influence, and better-appearing backgrounds.
Note that the input images are Al-generated, without con-
trol in terms of content appearance. Even if the images are
not natural in terms of light occlusion and observed inten-
sity, the ambient lit restored images show uniform light-
ing distribution, limited self-shadow influence, and homo-
geneous colors in semantically connected image segments.

3. Failure Cases

CL3AN is a difficult benchmark, shown by the statistics
characterizing the input data provided in Tab. 3 (main
manuscript). Direct RGB lighting produces color shifts
under the RGB arithmetic described by the properties of

the represented materials. Various highly reflective sur-
faces show complicated highlights. Moreover, observed
self-shadows color and strength are driven by the scene ge-
ometry under the color, intensity, and orientation of the di-
rectional lights illuminating the scene.

Fig. C presents a scene in which smooth surfaces charac-
terizing caustics are encased in a black opaque case. Black
objects have the property of appearing dark regardless the
color of the incoming light, given the low reflectivity at
the surface level. Therefore, the input color variance for
this class of objects is limited. However, one can observe
that when dark objects dominate the scene, a tendency to
mistakenly render other contents black exists. This can
be explained by the RLN2-Lf over-relying on global image
properties in its renderings. However, note that HINet [3],
NAFNet [1], and IFBlend [6] also struggle under these con-
ditions. HINet [3] produces visible color artifacts in areas
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Figure C. Failcases on challenging materials represented in the test split of the CL3AN dataset.

affected by shadows, while NAFNet [1] borrows from the
incoming light color in rendering some of the backgrounds.
All models are struggling to correctly render very detailed
low-intensity reflections, like those of the internal elements
of the depicted lens systems.

4. Discussion

CL3AN extends the study in Ambient Lighting Normaliza-
tion (ALN) to the influence of variable multi-color direct
lighting in the normalized images. Given that the high com-
plexity of the ALN is already emphasized in public litera-
ture [6], the extension of the current study to non-uniform
color shifts leads to complex adverse conditions in which a
proposed solution has to operate.

This comparison is easy to make, given the statistics pro-
vided in Tab. 3 (main manuscript), in which the images ac-
quired under direct multi-RGB lighting are characterized by
aloss of 2.56 dB in PSNR, 0.207 lower SSIM, and a degra-
dation of 0.265 in terms of LPIPS. Naturally, ALN remains
a particularly challenging task, especially given the current
extension, which shows great potential for future research.

RLN? represents a strong baseline for Color-to-Ambient
Lighting Normalization, as a robust model which is able to
account for the challenges posed by the introduction of the
multi-color direct lighting, while setting the current state-
of-the-art on the public AMBIENT6K benchmark, in the
white-aligned direct lighting setting. On novel contents,
RLN? shows improved handling of novel contents and rep-
resented lighting scenarios, producing high-quality render-

ings with improved color and lighting distribution, support-
ing the identified advantages, and becoming a new bench-
mark ALN solution.
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