
Table 5. Effects of fine-tuning longer. We provide additional results of CNNs when fine-tuned not for 150 epochs but 1000 epochs.

PT Method ATL SBM ISL HNT HAN MSF TPC YBM COS ACD AMO KIT ID Mean OOD Mean Mean

nnU-Net def. 1k 58.70 59.98 78.40 62.98 53.37 52.19 79.50 58.43 46.19 91.10 88.00 87.21 61.08 88.77 68.00

ResEnc-L (CNN)

Scratch 1k 58.21 53.43 79.14 65.75 58.24 54.90 79.94 56.12 71.57 92.09 88.73 87.48 64.15 89.43 70.47
VoCo 57.52 58.80 78.08 61.50 57.43 54.76 76.81 58.05 61.49 91.74 88.21 87.89 62.72 89.28 69.36
SwinUNETR 56.64 56.80 77.24 60.83 55.63 53.87 76.17 57.73 62.16 91.28 88.22 87.82 61.90 89.11 68.70
SimCLR 57.79 58.85 78.81 63.81 58.13 55.08 78.75 59.75 62.45 92.11 88.58 88.24 63.71 89.64 70.20
VF 59.48 60.57 78.65 62.00 55.97 54.62 77.76 59.28 68.29 91.87 88.59 88.20 64.07 89.55 70.44
MG 57.65 57.85 77.44 62.00 57.73 53.97 77.79 58.18 61.27 91.63 88.59 87.86 62.66 89.36 69.33
MAE 61.04 62.35 78.71 64.65 59.48 54.73 78.20 59.47 71.87 92.02 88.86 88.13 65.61 89.67 71.63
S3D 59.84 59.84 78.52 62.76 58.31 54.37 78.43 60.24 72.24 91.93 88.78 88.10 64.95 89.61 71.11

Table 6. Fewer data of higher quality provides similar performance. Removing pre-training data to conduct MAE pre-training on the
filtered datasets learns slightly more powerful representations than when using the full dataset. Moreover, reducing diversity of the training
data by only training on T1w, T2w and FLAIR images, shows inferior performance.

Dice Similarity Coefficient (DSC) [%] on ...
Dataset of same anatomical region (ID) Dataset of OOD region Average across ...

PT Method Data filter Samples [N] ATL SBM ISL HNT HAN MSF TPC YBM COS ACD AMO KIT ID OOD All

MAE

All 113.921 58.25 62.41 77.89 66.58 55.14 56.84 77.96 60.07 70.85 91.98 86.78 86.12 65.11 88.30 70.91
IQS 3 91.952 59.33 63.86 77.96 66.64 52.89 56.52 77.17 59.88 73.37 92.11 86.61 85.66 65.29 88.13 71.00
IQS 2.5 65.048 58.49 65.21 78.57 66.42 54.40 56.50 78.98 60.28 68.90 92.08 86.60 86.12 65.31 88.27 71.05
IQS 1.5 38.225 58.71 64.69 78.24 66.73 51.54 56.24 79.00 59.12 69.28 92.01 86.60 86.20 64.84 88.27 70.70
T1w,T2w,FLAIR 71.314 58.91 64.35 77.79 65.80 51.06 56.96 77.61 59.74 69.02 92.08 86.57 85.84 64.58 88.16 70.48

Table 7. Effects of considering or ignoring anonymized regions on reconstruction based pre-training methods.

Dice Similarity Coefficient (DSC) [%] on ...
Dataset of same anatomical region (ID) Dataset of OOD region Average across ...

PT Method Anon. aware ATL SBM ISL HNT HAN MSF TPC YBM COS ACD AMO KIT ID OOD All

MAE No 58.25 62.41 77.89 66.58 55.14 56.84 77.96 60.07 70.85 91.98 86.78 86.12 65.11 88.30 70.91
Yes 58.23 64.77 78.02 66.43 54.60 56.04 79.10 61.14 72.07 92.23 86.77 86.04 65.60 88.34 71.29

S3D No 58.76 64.09 78.05 65.74 52.81 56.08 78.81 59.18 66.66 92.01 86.16 86.01 64.46 88.06 70.36
Yes 59.01 62.84 77.92 66.07 53.47 56.01 77.59 58.87 69.45 92.04 86.28 85.80 64.58 88.04 70.45

A. Benchmark Results: Key Findings and Insights
Reconstruction based methods perform best for Segmentation: Our evaluation of SSL pre-training methods demon-
strates that reconstruction-based approaches outperform other paradigms in 3D medical image segmentation both for Res-
EncL and for Primus-M. In particular, default MAE-based pre-training achieves the strongest results, consistently surpassing
both a from-scratch nnU-Net baseline trained for 1000 epochs and the respective from-scratch trained architectures fine-
tuned for 150 epochs (see Table 2). Notably, the MAE-pretrained ResEnc-L models not only outperform their from-scratch
counterparts in 150 epochs but continue to improve with longer fine-tuning schedules (see Table 5).

Pre-training accelerates convergence: The most significant performance improvements from pre-training are observed
within the first 150 epochs of fine-tuning. For instance, Primus-M improves by 4.8 DSC points and ResEnc-L by 2.47 DSC
points within this short training duration. This surpasses the relative improvements compared to the full 1000-epoch training
from scratch (see Table 2). This highlights the efficiency of pre-training in enabling faster convergence.

ResEnc-L remains the best overall model: Despite the benefits of pre-training across architectures, the ResEnc-L CNN
continues to deliver the highest overall segmentation performance. After 150 epochs of fine-tuning, the MAE pre-trained
ResEnc-L achieves a mean Dice score of 70.92, slightly outperforming the Primus-M transformer, which reaches 70.42 (see
Table 2).

Pre-Training narrows the performance gap for Primus-M: While ResEnc-L remains the stronger architecture, pre-
training provides a substantial boost to the transformer-based Primus-M, significantly reducing the performance gap. Primus-
M benefits far more from pre-training than its CNN counterpart, highlighting the importance of self-supervised learning for



Table 8. Primus-M Transformer fine-tuning schedule results. Compared to the ResEnc-L fine-tuning, it can be observed that a normal
Warm-Up schedule exceeds the Sawtooth fine-tuning schedule which proved best for CNNs. *: While no-warmup is the default for CNNs,
the Primus-M architecture is trained per default with warm-up.

PT Method VoCo SwinUNETR SimCLR VF MG MAE SimMIM Mean
Dataset FT Schedule

SBM

Default* 42.03 47.27 59.61 64.81 62.95 70.86 66.27 59.12
Frozen 18.56 21.50 25.26 39.78 34.62 46.83 43.74 32.90
Warm-Up 44.16 47.65 59.92 66.03 62.79 71.02 66.16 59.67
Valley 37.55 41.64 54.96 65.74 59.11 67.42 67.67 56.30
Sawtooth 38.19 43.20 54.11 64.12 61.27 66.88 68.10 56.55

ATL

Default* 48.23 48.49 56.42 63.39 58.15 61.48 59.80 56.57
Frozen 25.88 28.99 39.90 32.91 47.18 57.57 49.59 40.29
Warm-Up 48.53 47.72 56.60 63.39 59.43 61.39 60.29 56.76
Valley 48.48 48.87 51.97 63.66 57.81 60.95 60.74 56.07
Sawtooth 48.04 48.79 52.81 63.00 59.17 61.19 60.69 56.24

AMO

Default* 67.28 67.43 75.96 85.73 82.95 87.93 88.00 79.33
Frozen 10.23 12.73 21.52 10.74 29.40 37.67 11.02 19.04
Warm-Up 67.71 67.96 76.43 85.40 83.04 88.25 87.79 79.51
Valley 66.02 66.51 75.88 84.81 82.91 87.80 88.39 78.90
Sawtooth 66.01 66.72 76.28 85.03 83.12 87.84 88.22 79.03

KIT

Default* 68.31 68.00 77.47 82.61 82.00 86.34 84.41 78.45
Frozen 22.02 24.14 33.67 23.87 33.10 40.82 27.40 29.29
Warm-Up 71.52 69.08 80.58 82.14 80.00 86.45 83.78 79.08
Valley 66.84 68.72 78.70 83.02 80.72 86.29 85.54 78.55
Sawtooth 66.33 69.13 78.59 80.40 80.38 85.66 84.55 77.86

Average

Default* 56.46 57.80 67.37 74.14 71.51 76.65 74.62 68.36
Frozen 19.17 21.84 30.09 26.83 36.07 45.72 32.94 30.38
Warm-Up 57.98 58.10 68.38 74.24 71.32 76.78 74.50 68.76
Valley 54.72 56.43 65.38 74.31 70.14 75.61 75.58 67.45
Sawtooth 54.64 56.96 65.45 73.14 70.99 75.39 75.39 67.42

architectures that struggle to learn effective representations from scratch. Compared to 1000 epochs of from-scratch training,
MAE pre-training followed by 150 epochs of fine-tuning improves Primus-M by 3.43 DSC points, whereas ResEnc-L sees
only a 0.44-point gain (see Table 2). Given the previously observed performance disparity between CNNs and transformers
in 3D medical image segmentation [35], these findings suggest that vision transformers, with appropriate pre-training, are
increasingly capable of achieving competitive segmentation performance.

Contrastive pre-training offers limited improvements for full model fine-tuning but is best when keeping a frozen
encoder for CNNs: Contrastive learning-based SSL methods—such as VoCo, SwinUNETR pre-training, and Sim-
CLR—provide little to no benefit for segmentation when fine-tuning the entire model (see Table 4). These approaches
either fail to surpass or only slightly improve upon the 150-epoch from-scratch baseline and, in some cases, they even de-
grade performance, particularly for the transformer-based Primus-M architecture. However, when fine-tuned with a frozen
decoder, SimCLR pre-trained models outperform reconstruction-based methods for CNNs in segmentation (see table 4).

A frozen Transformer Encoder is worse than a frozen CNN Encoder: Keeping the encoder frozen during fine-tuning re-
sults in an even greater performance drop in performance for Transformers than for CNNs (see Table 2 and Tab. 4). While the
ResEnc-L decoder allows for some adaptation, the Primus-M transformer has significantly fewer trainable parameters in its
light-weight decoder stage. In this setting, fine-tuning is not far away from being linear probing, since only TransposedConv-
Norm-Act layers are trained. This severely limits the decoder’s model capacity, which makes adapting to new tasks more
difficult. This underscores the necessity of full fine-tuning for Transformer architectures or the adaptation of Low-Rank
adaptation fine-tuning strategies.

Longer fine-tuning improves OOD datasets: A comparison between the 150 epoch and 1000 epoch fine-tuning schedules
reveals a trade-off between adaptation and preservation of pre-trained representations. Longer fine-tuning proves beneficial



for datasets where pre-training initially provided little advantage over 1000 epoch from-scratch training (see Table 5 and
Table 2). This effect is particularly pronounced in out-of-distribution (OOD) datasets, such as KIT and AMO, which differ in
modality, as well as datasets with a large number of target classes, like HAN and AMO, where convergence generally takes
more time.

Longer fine-tuning can degrade performance where pre-training was already effective: In cases where pre-training
already yielded strong improvements in shorter fine-tuning schedules, extending fine-tuning can lead to performance degra-
dation. Notably, datasets such as SBM and HNT experience a decline when trained for 1000 epochs. These findings suggest
that while extended fine-tuning can enhance generalization for OOD datasets, it may also override beneficial pre-trained
representations in cases where pre-training was already highly effective.

Contrastive pre-training methods excel in classification: For ResEnc-L and Primus-M, contrastive pre-training consis-
tently outperforms reconstruction-based approaches in classification tasks (see Table 3). While MAE pre-training still pro-
vides an improvement over training from scratch, it performs worse than all other methods. Meanwhile, other reconstruction-
based methods like MG and S3D achieve moderate classification performance but still fall short of contrastive approaches.
This finding reinforces that contrastive learning produces more generalizable global feature representations, making it partic-
ularly advantageous for classification tasks.

Balancing data quality and diversity is crucial for optimal performance: While the overall impact of filtering for high-
quality images is limited, it does lead to slight performance improvements. Using only the top 57% of images with better
quality results in a modest improvement of 0.15 DSC points (see Tab. 6). However, applying a stricter filter—retaining
62% of images by selecting only T1w, T2w, and FLAIR sequences—leads to a performance drop of 0.43 DSC points. This
suggests that improving image quality can enhance results, but reducing dataset diversity negatively impacts performance.
Notably, our quality filtering approach was relatively simple, leaving room for more refined selection strategies.

Impact of anonymization on reconstruction-based methods: Anonymization modifies image features, potentially im-
pacting reconstruction-based pre-training methods that depend on pixel-level details. Processes like skull-stripping, defacing,
or intensity masking may remove valuable anatomical structures, affecting representation learning. Incorporating masks dur-
ing training to exclude these artificially altered regions from loss calculations slightly improves downstream performance (see
Tab. 7). Unsurprisingly, this benefit is observed only for in-distribution datasets covering the head region, as these datasets are
directly affected by anonymization processes that alter facial structures or skull regions. In contrast, for out-of-distribution
datasets where such modifications are less relevant, anonymization has no noticeable effect.

B. OpenMind Dataset Details
While we provide broad information on the OpenMind dataset in the main manuscript, we extend this and go into more
details in the following sections. First we provide more details on the Image Quality Score in Appendix B.1, provide details
of the DWI Preprocessing in Appendix B.2 and lastly provide a broad overview of the dataset distribution in Appendix B.3.

B.1. Image Quality Score
The Image Quality Score is intended as a measurement of the suitability of data for pre-training to remove low-quality images
from the pre-training dataset and hopefully increase downstream method performance. We want to denote that the idea of
images being of higher or lower utility for pre-training is largely pre-training method-dependent. For example, images that
exhibit large amounts of noise will be less suitable for reconstruction-based pre-training methods (e.g. MAEs), due to the
presence of noise being impossible to predict for the model. Contrastive methods (e.g. SimCLR) on the other hand may be
positively affected due to learning invariance of their representations to such noise. However, downstream datasets – which
are application focused – are often composed of high-quality images with minimal noise to optimize outcomes, such as
maximizing the accuracy of CyberKnife radiation therapy. Under these aspects, the Image Quality Score can be interpreted
as a measure that quantifies the similarity of the pre-training dataset to the downstream datasets that represent real-world
clinical applications.



Figure 2. Head-and-Neck scans are often defaced, have the face blurred or have been brain-extracted to guarantee patient privacy. This
can potentially harm reconstruction-based SSL methods. We provide anonymization and anatomy masks to allow taking this into account
during method development.

Image Quality Score quantification To create the Image Quality Score (IQS), we inspected two images of each modality
in a dataset for all 800 datasets composing the OpenMind dataset4. The resulting Image Quality Score of the two rated
images was extended to all images of the same modality within the same dataset, as individual studies showed to be very
consistent in their imaging protocols leading to very similar appearance of all images of the same modality within a dataset.
Each of these two images was evaluated on a score from 1 to 5, with 1 indicating clear and sharp imagery and 5 indicating
highly compromised image quality, based on their noisiness and blurriness induced e.g. by subject motion during image
acquisition. Artifacts such as visible imaging equipment, the presence of signal voids (visible as shadows, covering a wide
area), Gibbs artifacts or other contortions were categorized under artifact level. The artifact level was not included for all
DWI-derived images, as the preprocessing steps already involved extensive removal of various artifacts and a brain extraction
step, see Appendix B.2 for more details. Furthermore, images that were derived from the same DWI image receive the same
Image Quality Score. Images where the field of view (FOV) captured only small regions of the brain or where the anatomy
covered only a minor portion of the entire volume were also marked. Lastly, raters were able to tag images showing signs
of corruption, such as those where missing data was apparent or entirely erroneous. These scores were determined by two
independent raters and then aggregated to create the final Image Quality Score (IQS). Specifically, for each dataset and its
modalities, the Image Quality Score (IQS) was calculated as follows:
i) Aggregation of ratings from all raters: For each image, values on a linear scale (noisiness, blurriness, and artifact level)
are averaged, while for categorical values, such as the state of corruption or the FOV, the worst possible value is selected to
represent the image.
ii) Calculation of IQS for each image: First, the average of all numerical values is calculated. However, if the image is

marked as corrupted or any numerical value equals 5, the IQS for that image is immediately set to 5. The IQS is increased by
one point (capped at 5) if the image’s FOV is suboptimal, as described above.
iii) Modality-Wise IQS Aggregation per Dataset: For each dataset and modality, each image is assigned the average IQS

of these two randomly selected images.

B.2. DWI Preprocessing
Diffusion-weighted imaging (DWI) measures the diffusion of water molecules in tissue across 3D space. The direction of
this diffusion process can be influenced by applying additional magnetic field gradients, allowing researchers to identify
tissues that are more or less permeable to water diffusion in specific directions. Because the diffusion process is direction-
ally dependent, multiple images are acquired using gradients of varying strengths to, for example, quantify anisotropies in
diffusion behavior. As a result, DWIs are typically composed of a stack of 3D images, forming complex 4D images that
are challenging to process and integrate. To manage the complexity of these 4D images, they are preprocessed into single
3D image formats that describe specific properties derived from the diffusion measurements in a more interpretable manner.
These 3D derivatives of the DWIs allow easier integration into standard SSL pipelines. Specifically, we create T2-weighted,
MD, and FA maps from the original 4D DWI stacks.

4The image quality assessment process was started with 5 images manually rated, but was reduced to just two images, due to high consistency in image
attributes between the different images.



Figure 3. DWI preprocessing pipeline: To derive 3D images from the 4D DWI images, they are processed through six steps, denoising,
ringing removal, co-registration, field correction, brain extraction, and lastly 3D derivative creation. Best viewed on a screen to see the
differences between steps.

The overall preprocessing pipeline is composed of six steps, displayed in Fig. 3: i) Denoising of each 3D image. ii) Gibbs
ringing artifact removal of each 3D image. iii) Co-registration of all images to one reference image to correct for potential
distortions and motion artifacts. iv) Field correction of potential B1 field inhomogeneities. v) Brain extraction to remove skull
and potentially existing face tissue that is not accounted for in the Map creation. vi) Actual creation of the 3D derivatives,
namely a T2-weighted image, an MD-Map and an FA-Map.

B.3. Dataset overview
Dataset origin The final OpenMind dataset is comprised of 113,921 3D volumes of 34,191 subjects sourced from exactly
800 datasets. However, the dataset scale differs greatly, with 12 datasets contributing 50% of all data, 81 contributing 75%
and 283 contributing 90% of all data, with the remaining 517 contributing the remaining 10%. While this indicates that many
datasets do not contribute a huge quantity of data, they still introduce different niche modalities which may still be of value
for the generalization of the pre-trained models. We visualize the cumulative dataset count over an increasing amount of
datasets in Fig. 4.

Image Modalities The OpenMind dataset spans 24 Image Modalities – with all but the PET images being MR image
variations. While we report these 24 Image Modalities, we want to emphasize that defining MR modalities or techniques is
not trivial – e.g., T1-weighted MRIs can be acquired with various repetition and echo times, can be acquired by different
scanners (changing image appearance drastically) but can still be considered a T1-weighted image. This complicates the
assignment of images to specific categories, so the absolute number should be interpreted accordingly. To arrive at our
provided number of 24 modalities, we used the provided BIDS modalities (which is not particularly consistent in naming
between datasets) and grouped them into the final 24 categories detailed in Tab. 10. Overall, the majority of modalities are
the common structural T1w, T2w and FLAIR images, as well as our diffusion-derived FA and MD-maps, representing about
86% of all data, with the remaining images being composed of various other techniques or modalities.
Overall, the OpenMind dataset consists of 40,720 unique imaging sessions, with a) 23,299 sessions with a single, b) 6,884
sessions with two images, c) 1,384 sessions with three images, d) 4,094 sessions with four images, e) 1,189 sessions with
five images, f) 612 sessions with six images, g) 123 sessions with seven images, h) 115 sessions with eight images, i) 106
sessions with nine images, j) 287 sessions with ten images, k) 2,627 sessions with eleven or more images. We denote that the



Figure 4. Cumulative number of image volumes over number of datasets. 50% of all images of the entire OpenMind dataset originate
from 12 datasets, while 81 datasets contribute 75%, 283 contribute 90% and the remaining 517 contribute the remaining 10%.

Table 9. Top 12 datasets by image count. Together, these datasets represent approximately half of the total image volume (58,148
images).

Dataset ID 3D Volumes

ds004146 Strike et al. (2022) 16,016
ds003097 Snoek et al. (2021) 11,003
ds004884 Gibson et al. (2024) 6,945
ds004889 Rorden et al. (2024) 6,860
ds004215 Nugent et al. (2025) 3,013
ds004299 Gera et al. (2022) 2,668
ds004856 Park et al. (2024) 2,524
ds003604 Wang et al. (2022) 2,338
ds003416 Cai et al. (2021) 2,020
ds000221 Babayan et al. (2020) 1,805
ds003138 Koschutnig et al. (2023) 1,590
ds002843 Lee and Kable (2021) 1,366

Table 10. Volume quantity by modality. Final modality groupings as derived from the OpenNeuro BIDS modality indicators and as
known from the own DWI derivatives for FA, MD and T2w maps.

T1w T2w FA MD FLAIR MP2RAGE sbref ADC
42732 22999 13407 13407 5583 2859 1795 1757

TRACE UNIT1 inplaneT2 SWI UNIT1 denoised minIP PET T1map
1715 927 892 784 724 687 653 557

inplaneT1 angio PDw T2starw FLASH T2map T2starmap DWI
529 488 473 409 307 106 76 55

same modality can exist multiple times within the same session, e.g., due to variations in the acquisition parameters.

Metadata categories and availability Moreover, we display the availability and distribution of metadata information like
age, sex, bmi, handedness, health status and race in the OpenMind datasets in Fig. 5. It can be observed that the majority
of datasets provide information about subject sex and age > 70%, significantly fewer datasets provided information about
the handedness (35%), health status (26.4%), bmi (15%) or race (11%). Even fewer studies recorded subject weight (1.5%).
While we only conducted benchmarking of pure self-supervised learning methods that treat each image by itself, there exist



Figure 5. Metadata of the OpenMind Dataset: A total of 113,921 images from 800 datasets were curated and standardized, incorporating
key metadata categories such as patient age, weight, BMI, sex, race, and health status, along with imaging modality. To enhance clarity,
each pie chart and histogram in the figure only includes scans for which the respective metadata was available. The total number of
available cases for each category is displayed above each graphic. Moreover, we denote that this number refers to images and not subjects
of which there are only 34k. Therefore, this reflects the image-metadata pair availability instead of a per-patient score, which would not
allow knowing the amount of scans with metadata.

150

Le
ar

ni
ng

 R
at

e

Epochs

Default

150

Le
ar

ni
ng

 R
at

e

Epochs

Frozen

Only Decoder trained
15015

Le
ar

ni
ng

 R
at

e

Epochs

Warm-Up

150

Le
ar

ni
ng

 R
at

e

Epochs

Sawtooth

15 3015 30 150

Le
ar

ni
ng

 R
at

e

Epochs

Valley

Figure 6. Overview of fine-tuning schedules. The plot illustrates the learning rate (lr) schedules for 150-epoch training runs. For 1000-
epoch training, the overall structure remains the same, but each warm-up stage was extended from 15 to 50 epochs. The maximum learning
rate was set to 1e-3 for ResEnc-L and 3e-5 for Primus-M. Light blue lines indicate stages where only the decoder was trained, while the
encoder remained frozen.

pre-training methods that take meta-data into account to provide more efficient pre-training, which could be explored in
future work.

C. Fine-tuning Details
C.1. Segmentation Fine-tuning
All datasets were preprocessed using a fixed cubic 1mm target spacing and z-score normalization mirroring the preprocessing
of the pre-training dataset. However, for the pure CT dataset KIT, we applied nnU-Net’s default CT normalization, which
includes intensity clipping before z-score normalization. Additionally, for TPC, we used nnU-Net’s default target spacing,
as the 1mm cubic target spacing proved far too coarse for the dataset’s thin target structures, which otherwise leads to a
significant performance drop. For all nnU-Net default training runs from scratch, we applied the automatically planned,
dataset-specific default target spacing and normalization. For fine-tuning, we set the initial learning rate to 1e-3 for ResEnc-L
and 3e-5 for Primus-M, reducing the default learning rate of each model by one order of magnitude during the fine-tuning.



Below, we describe the different fine-tuning schedules explored in this work:
Default: This schedule follows nnU-Net’s standard polynomial decay learning rate (lr) strategy, providing a gradual reduc-
tion in learning rate over time.
Frozen: The learning rate schedule remains the same as in the Default setting, but training is restricted to the decoder, keep-
ing the encoder parameters fixed.
Warm-Up: Fine-tuning begins with a linear increase in the learning rate, allowing for a gradual adaptation before transition-
ing into the Default schedule.
Valley: Training starts by optimizing only the decoder with a linearly decreasing learning rate. This is followed by a warm-up
phase, where the entire network is trained using a linearly increasing learning rate, before finally switching to the Default
schedule.
Sawtooth: This schedule employs a two-stage warm-up. In the first phase, only the decoder is trained with a linearly increas-
ing learning rate while keeping the encoder frozen. In the second phase, the entire network undergoes another warm-up with
a linearly increasing learning rate before continuing with the Default schedule.
For training runs with 150 epochs, each initial warm-up stage lasts 15 epochs, while for 1000-epoch training, each stage
is extended to 50 epochs. In all experiments, except for those reported in Table 4 and Tab. 8, we use the best-performing
fine-tuning schedules: Sawtooth for ResEncL and Warm-Up for Primus-M.

C.2. Classification Fine-tuning
All classification fine-tuning was conducted using an adaptation of the Image Classification framework, which supports 3D
classification. Preprocessing in this framework follows the standard nnU-Net preprocessing pipeline, with the important
distinction that the entire volumes are resized to a smaller size, as classification is performed on entire images rather than
sampled patches to guarantee the presence of potentially important visual cues.
For all datasets, models were trained for 200 dataset epochs (In our classification training, an epoch corresponds to a full
dataset epoch.) using a learning rate of 1e-4 and a cosine annealing scheduler with a 20-epoch gradual warm-up applied to
both the encoder and classification head. Optimization was performed using AdamW with a weight decay of 1e-2. Given
the importance of large batch sizes for classification tasks, gradient accumulation over batches was employed to compensate
for memory constraints. For the MRN dataset, the volumes were resized to [32 ⇥ 256 ⇥ 256]. The Primus-M architecture
was trained with a batch size of 8 and gradient accumulation over 48 batches, while the ResEnc-L architecture used a batch
size of 16 with gradient accumulation over 12 batches. On the RSN dataset, volumes were resized to [160 ⇥ 192 ⇥ 192].
The Primus-M model utilized a batch size of 2 with gradient accumulation over 192 batches, whereas ResEnc-L used a batch
size of 4 with accumulation over 48 batches. For the ABI dataset, volumes were resized to [160 ⇥ 192 ⇥ 224]. Primus-M
was trained with a batch size of 2 and gradient accumulation over 48 batches, while ResEnc-L employed a batch size of 4
with accumulation over 96 batches. Model performance was evaluated using 5-fold cross-validation, and we report Balanced
Accuracy and Average Precision as metrics. Detailed configuration files for each dataset are available within the image
classification framework repository.

D. Self-supervised learning method details
In this section, we provide a broad overview of the functionality of the different pre-training methods and provide details
on hyperparameters of these methods. While some hyperparameters were method specific, we want to denote that we tried
to keep hyperparameters as unified as possible to assure fairness. This includes that both ResEnc-L and Primus-M were
pre-trained with a batch size of 8 and an input patch size of [160 ⇥ 160 ⇥ 160] for the equal amount of 1000 epochs of 250
steps each. Moreover, the ResEnc-L pre-training learning rate was set to 1e-2, weight decay 3e-5, with an SGD optimizer
with Nesterov following a PolyLR decay (see ”default” in Fig. 6). The Primus-M architecture was pre-trained with an initial
lr pre-training rate of 3e-4, weight decay 5e-2 with an AdamW optimizer following a ”Warm-Up” schedule of Fig. 6 with 50
epochs of Warm-Up. Moreover, as different pre-training schedules adapt the architecture for the purpose of their method, we
provide a visualization of these adaptations of the ResEnc-L UNet architecture and the Primus-M architecture in Fig. 7. It is
to note that irrespective of the decoder being optimized during the pre-training, which would allow to transfer the pre-trained
encoder into the segmentation downstream task, we chose to discard the decoder, as previous work showed this to be slightly
superior [15]. For pre-training, we used a fixed target spacing of cubic 1mm and applied z-score normalization.

D.1. Volume Contrastive (VoCo)
Method description Wu et al. [22] proposed the Volume Contrast (VoCo) framework, which aims to capture contextual
relationships in 3D medical images by contrasting different subvolumes within an image. Specifically, given an input volume,

https://github.com/MIC-DKFZ/image_classification


Transformer
Backbone

Si
ng

le
 C

on
v

Li
gh

tw
ei

gh
t

D
ec

od
er

LPe

+

a)

b) Pr
oj

ec
tio

n

Residual Blocks

a)
C

C

C

C

A
da

p.
 A

vg
Po

ol

b)

C C C C

A
da

p.
 A

vg
Po

ol

A
da

p.
 A

vg
Po

ol

A
da

p.
 A

vg
Po

ol

To
ke

n 
A

vg
.

Po
ol

in
g

A
da

p.
 A

vg
Po

ol

Pr
oj

ec
tio

n

CNN Encoder CNN Decoders Transformer DecoderTransformer Encoder

Figure 7. Architecture configuration during pre-training. We provide sketches of the different architectural settings the architectures
are pre-trained in, depending on the needs of the respective method, as sometimes a dense and sometimes a global output is required. Since
the skip-connections of the ResEnc-L architecture provide outputs on different resolutions, these were averaged through adaptive average
pooling and concatenated before projection to the final latent (VoCo, SimCLR). For dense-outputs the highest-resolution output was used
(MAE, S3D, VF, MG). The Primus-M architecture does not utilize multi-resolution streams, hence either an iterative up-projection was
conducted as proposed in the original paper when requiring dense outputs (MAE, SimMIM, MG, VF), or a token average pooling followed
by a linear projection layer was used (VoCo, SimCLR). For the SwinUNETR architecture, which requires dense and global outputs, we
follow a) for generating dense outputs, except that no skip connections are used, as described in [23], and only a slice/channel for the
rotation and contrastive prediction is leveraged, as implemented in their original repository, which we refer to for more details.

they first divide it into b non-overlapping base volumes arranged in a grid-like layout and extract them as individual base
crops. In addition, n random crops are extracted from within the same volume. The backbone of the network processes all
crops to extract the respective latent features. Following the SimCLR pre-training scheme, the latent features are then passed
through a projection head to map them to a different embedding space. VoCo optimizes two objectives. The first involves
computing similarity logits between a random crop’s embedding p and the embeddings of all n base crops qi using cosine
similarity. These predicted similarity scores (ranging from 0 to 1) should align with the actual overlap proportions between
the random crop and each base crop. The second objective introduces a regularization term that encourages the backbone to
learn discriminative features between different base crops. This is achieved by calculating the cosine similarity sij between
two different bases qi and qj and incorporating it into the loss function, thereby pushing sij towards a minimum of 0.

Hyperparameter choices The final pre-training settings in [22] utilize a grid of [4⇥ 4⇥ 1], yielding b = 16 base volumes,
each with a size of 963, in addition to n = 4 randomly sampled crops of the same size. This results in a total patch size of
[384 ⇥ 384 ⇥ 96]. Afterwards, all crops are resized to 643. With our isometric spacing of [1 ⇥ 1 ⇥ 1]mm and brain MRIs
as our pre-training dataset, a total patch size of [384⇥ 384⇥ 96] proves impractical, given that human brains are far smaller
than 38.4cm in width. Hence, we skip the downsampling step and directly crop volumes using the final input patch size
of the network. Furthermore, we ensure that the grid does not exceed a size of 25.6cm in any direction. As the original
hyperparameters proved to be not directly applicable we conducted additional tuning experiments on the validation set of
the development datasets, ablating the choice of learning rate (lr), weight decay (wd), grid number (which indirectly affects
the individual total patch size) as well as the number of randomly sampled target crops (n), see Tab. 11. We started the
optimization process with lr = 1e�2, wd = 3e�5, n = 4 and a grid of b = [4⇥4⇥1]. We keep the crop size and input patch
size at 643 throughout the entire process, leading to an initial total patch size of [256 ⇥ 256 ⇥ 64]. The final configuration
proved to be the same as the initial configuration, with ultimately no changes in the hyperparameter settings.

D.2. Volume Fusion (VF)
Method description Volume Fusion (VF) is a pseudo-segmentation pretext task introduced by Wang et al. [16]. Given two
separate input volumes If and Ib and a voxelwise fusion coefficient map ↵, a fused volume X is generated as follows: X =
↵ ·If+(1�↵)·Ib. Each voxel’s fusion coefficient ↵i is drawn from a discrete set V = {0.0, 1/K, 2/K, ..., (K�1)/K, 1.0},
where K denotes the number of nonzero fusion coefficients. Each unique value in V is treated as a class, resulting in
C = K + 1 segmentation classes. Since constructing a fused volume requires two input volumes, each mini-batch sample is
formed by drawing a pair of images from the pre-training dataset. The corresponding fusion coefficient map is then generated
by sequentially selecting patches of varying sizes at random and assigning each patch a fusion coefficient sampled from V .



Table 11. Optimization of VoCo Hyperparameters. We optimized Learning Rate, Weight Decay, Grid Size and Number of Random
Crops, the most important hyperparameters of the VoCo method in this order. The optimal value for each fine-tuning step is highlighted in
gray. DnC: Did not Converge during pre-training.

Dice Similarity Coefficient (DSC) [%] for different hyperparameters
1. Learning Rate 2. Weight Decay 3. Grid Size 4. Num. Random Crops

Ablated value 1e-2 1e-3 1e-4 3e-4 3e-5 3e-6 3x3x1 4x4x1 4x4x2 2 4 8
Other values wd=3e-5; gr=4x4x1; n=4 lr=1e-2; gr=4x4x1; n=4 lr=1e-2; wd=3e-5; n=4 lr=1e-2; wd=3e-5; gr=4x4x1

Dataset Epochs

SBM 150 71.52 70.85 71.35 DnC 71.52 65.90 69.50 71.52 72.57 69.71 71.52 72.30
1000 70.20 73.33 72.98 DnC 70.20 67.17 72.00 70.20 70.69 71.45 70.20 71.34

ATL 150 60.42 59.31 60.08 DnC 60.42 56.74 60.76 60.42 58.11 59.62 60.42 60.35
1000 59.62 59.59 58.32 DnC 59.62 57.61 58.90 59.62 58.70 58.23 59.62 59.26

AMO 150 86.78 85.52 82.88 DnC 86.78 84.16 86.04 86.78 86.27 86.00 86.78 86.69
1000 88.86 88.65 88.57 DnC 88.86 88.17 88.82 88.86 89.03 88.92 88.86 88.90

KIT 150 85.12 82.01 80.14 DnC 85.12 80.33 83.93 85.12 83.44 83.93 85.12 83.14
1000 86.72 84.76 86.40 DnC 86.72 84.60 84.93 86.72 84.56 85.79 86.72 85.26

Average DSC [%] 150 75.96 74.42 73.61 DnC 75.96 71.78 75.06 75.96 75.10 74.82 75.96 75.62
1000 76.35 76.58 76.57 DnC 76.35 74.39 76.16 76.35 75.75 76.10 76.35 76.19

Average Rank 150 1.00 2.50 2.50 DnC 1.00 2.00 2.25 1.50 2.25 2.75 1.25 2.00
1000 1.50 2.00 2.50 DnC 1.00 2.00 2.00 1.75 2.25 1.75 2.00 2.25

Table 12. Optimization of Volume Fusion Hyperparameters. We optimized Learning Rate, Weight Decay and Number of Nonzero
Fusion Coefficients (K), the most important hyperparameters of the Volume Fusion method in this order. The optimal value for each
fine-tuning step is highlighted in gray.

Dice Similarity Coefficient (DSC) [%] for different hyperparameters
1. Learning Rate 2. Weight Decay 3. K

Ablated value 1e-2 1e-3 1e-4 3e-4 3e-5 3e-6 2 4 8
Other values wd=3e-5; K=4 lr=1e-3; K=4 lr=1e-3; wd=3e-5

Dataset Epochs

SBM 150 73.85 73.78 75.10 76.24 73.78 74.45 74.91 73.78 75.91
1000 72.43 75.10 72.90 74.09 75.10 72.86 73.33 75.10 75.32

ATL 150 64.99 65.07 61.58 63.61 65.07 63.84 63.64 65.07 63.71
1000 62.10 62.80 60.72 62.55 62.80 62.62 61.82 62.80 62.69

AMO 150 86.67 86.46 85.20 86.79 86.46 86.08 85.81 86.46 86.34
1000 89.10 88.95 88.70 89.50 88.95 89.03 89.13 88.95 88.97

KIT 150 84.56 85.41 82.97 83.10 85.41 84.45 83.28 85.41 84.95
1000 86.21 86.15 85.29 85.65 86.15 86.76 85.25 86.15 85.00

Average DSC [%] 150 77.52 77.68 76.21 77.43 77.68 77.21 76.91 77.68 77.73
1000 77.46 78.25 76.90 77.95 78.25 77.82 77.38 78.25 78.00

Average Rank 150 1.75 1.75 2.50 2.00 1.75 2.25 2.75 1.50 1.75
1000 1.75 1.50 2.75 2.25 1.75 2.00 2.25 1.75 2.00

Hyperparameter choices We started the optimization process with lr = 1e�2, wd = 3e�5. Furthermore, different values
of K were investigated, and an initial value of K = 4 was employed, following [16]. We used center cropping as the
sampling strategy, as it promotes spatial consistency and ensures that corresponding anatomical regions align, while also
avoiding volumes with large empty patches in our fused volume. All experiments were conducted on the validation set of
the development datasets. In the final configuration, the learning rate was adjusted to 1e�3, while the other settings remained
unchanged. Results are shown in Tab. 12.

D.3. Masked Autoencoders (MAE), S3D and SimMIM
Method description Masked autoencoders are a pre-training paradigm that mask a variable amount of the input image
and learn to reconstruct the image based on the remaining, non-masked context of the image. Commonly, the pre-training
objective only optimizes reconstructing the masked regions, in (normalized) pixel-space through an L2 loss.
MAEs for Transformers: MAE pre-training was popularized through [3] in conjunction with vision transformer architec-
tures for the natural imaging domain (first evaluated in 3D through Chen et al. [18]), which leverage the sequence modeling



paradigm to improve computational efficiency by discarding the masked tokens effectively reducing the sequence length in
the transformer. While this allows the encoder to function very effectively, the mask-tokens need to be re-introduced in order
to reconstruct a full image, which is generally done by adding an additional transformer decoder stage, which is discarded
when transferring to the downstream task.
SimMIM for Transformers: While Transformers are capable of discarding the masked tokens, this is not mandatory. In
fact not discarding the tokens, but instead replacing them immediately with learnable Mask Tokens – introduced in 2D by
Xie et al. [64] and adapted to 3D by Chen et al. [18]– leads to not needing an additional decoder, which can simplify training.
This is generally less computationally efficient and a less common approach.
MAEs for CNNs: While keeping or discarding the masked regions in the Transformer is a choice, in CNNs it is mandatory
to keep them as no efficient sparse-convolution methods exist to date. Subsequently, CNN MAEs suffer from the same in-
efficiencies that the SimMIM transformer methods does. Similar to the SimMIM case, the masked regions gradually shrink
as the receptive field of the CNNs allows information to leak into the zeroed areas. Moreover, due to a large area in the
input being artificially set to zeros, the Batchnorm statistics are influenced by the masking, which may lead to a shift in norm
statistics when moving the pre-trained network to downstream tasks, making this approach less prevalent. Despite this, it is
still a viable option for CNN pre-training. An exemplary use-case of such an approach in 3D can be seen in Munk et al. [17].
S3D for CNNs: Given the success of MAEs for Transformers, efforts were made to adapt the CNN architecture to resemble
the MAE pre-training paradigm more closely by trying to maintain the masked regions for the entirety of the encoder and
filling them at the beginning of the decoder with masked tokens. This also helps to overcome the BatchNorm statistic prob-
lems, see Tian et al. [65]. This methodology was adopted by Wald et al. [15], Tang et al. [24] for pre-training 3D medical
images.

Hyperparameter choices S3D for CNNs: We used the publicly available repository provided by Wald et al. [15], re-using
their final configuration due to them training their method on a dataset from a similar body-region. Notable hyperparameters
included a pre-training patch size of [160 ⇥ 160 ⇥ 160], learning rate of 1e-2, weight decay of 3e-5, batch size of 85, SGD
optimizer with Nesterov and momentum 0.99, randomly sampled masking ratio between [60%-90%] with a L2 training loss
that is only applied where inputs were masked. Due to the methodological restrictions of needing to mask in the bottleneck,
the masked regions consisted of non-overlapping blocks of [16⇥ 16⇥ 16] voxels that were projected up from the bottleneck.

MAE for CNNs: Our MAE implementation originates from the same repository as S3D [15] as the authors had an MAE
implemented as an intermediate development stage. We included this implementation in our experiments as is – again due to
the similarity of the dataset. Hyperparameters are identical to those of S3D with the exception of the MAE having a static
masking ratio of 75% and a masking block size of [16⇥ 16⇥ 16].
MAEs for Transformer: While existing MAE implementations for Transformers exist ([18]), they commonly use default
3D ViT’s, which have shown to be far from ResEnc-L CNNs as shown in Isensee et al. [34] or Bassi et al. [51]. Instead,
we use the recent Primus-M architecture, which provided an improved Transformer configuration. Consequently, we draw
inspiration from their hyperparameters and used learning rate 3e-4, weight decay 5e-2, AdamW Optimizer with 1e-8 eps
and betas (0.9, 0.98) and DropPath 0.2. We adopt randomly dropping tokens, which are of size [8 ⇥ 8 ⇥ 8] for Primus with
a masking ratio of 75%. Since the MAE scheme requires a decoder, we introduced a decoder of depth 2, with embedding
depth (864) and number of heads (12) – identical to Primus-M. The masked regions were replaced by learnable embeddings
of identical embedding dimensions.

SimMIM for Transformer: Due to the similarity between the MAE and the SimMIM method, we utilized the same hyper-
parameters but introduced the learnable mask tokens at the very beginning and introduced no additional decoder since this is
not needed for SimMIM.

D.4. SimCLR
Method decription SimCLR (Simple Framework for Contrastive Learning of Visual Representations) [66] is a self-
supervised learning approach that relies on contrastive learning to pre-train deep neural networks without labeled data. The
core idea behind SimCLR is to maximize the similarity between differently augmented views of the same image while
minimizing the similarity between views of different images. The training framework consists of the following steps:

5In the original repository this was set to 6, but as we developed our models on nodes with 4x40GB A100s we increased this to 8 to evenly distribute the
images across all GPUs.



1. Data Augmentation: Each input image is transformed using a set of randomized data augmentations, such as random
cropping, color distortion, Gaussian blur, and flipping. These augmentations produce two different views (positive pairs)
of the same image.

2. Encoding: The ResEnc-L or Primus-M backbone processes each augmented image, mapping it to a latent representation.
3. Projection: The latents are passed through a linear projection head that maps the representations to a lower-dimensional

space where the contrastive loss is applied.
4. Contrastive Loss: The loss function used in SimCLR is the normalized temperature-scaled cross-entropy loss (NT-Xent).

This loss encourages the positive pairs (two augmentations of the same image) to be close in representation space while
pushing away representations of different images (negative pairs).

By minimizing this training objective, the model learns to generate useful feature representations by learning to become
invariant to the augmentations, learning to focus on the semantic meaning, while learning that different categories should be
different. After training, the encoder is fine-tuned, and the projection head is discarded.

Hyperparameter choices Contrastive pre-training methods generally require larger batch sizes as they need to learn what
to be similar and dissimilar to. We train with a batch size of 32, receiving input crops of [192 ⇥ 192 ⇥ 64] of which
we create two augmented sub-crops of dimensions [64 ⇥ 64 ⇥ 64] per input crop with a minimal crop-overlap of 50%.
Moreover, the NTXent loss uses a temperature scale of 0.5 as well as a cosine similarity function between the latents. To
create the augmented versions, we employ GaussianNoise, GaussianBlur, BrightnessMultiplicative, ContrastAugmentation,
SimulateLowResolution, Gamma, Mirror and Rotate90Deg transforms of the common batchgenerators framework6. We refer
to the repository for explicit parametrization and potential repetitions of the same augmentations.

D.5. SwinUNETR
Method description SwinUNETR was proposed as a pre-training method for the identically named SwinUNETR architec-
ture and is composed of three components: Image inpainting, Rotation prediction as well as a contrastive training objective.
The inpainting itself is a simple L1 loss applied for a masked out image region, the rotation is a rotation of 0°, 90°, 180° or
270° degrees along the z-axis with an MLP used to classify the applied rotation. Lastly, the contrastive coding enforces
the linearly projected representations of the encoder to be highly similar or dissimilar if the two sub-volumes belong to the
same or a different image, respectively. These three losses are combined with an equal weighting to form the SwinUNETR
pre-training.

Hyperparameter choices Adhering to the original hyperparameters we calculate the in-painting loss with an L1 loss
function, the rotation classification through a cross entropy loss and the contrastive loss and aggregate the final loss through
aggregating the losses with weights �rot = �inpaint = �contrast = 1. For the rotation objective, we follow the description
in the paper and rotate along the z-axis. For the contrastive objective, we followed the original implementation, which uses
random rotations and random cut-outs with a maximum removal rate of 60% (In the paper, they mention a drop rate of 30%
but override this in the implementation). As no other model-specific hyperparameters had to be chosen, we trained the model
with a batch size of 8 and an input image shape of [160⇥ 160⇥ 160], which was internally doubled by SwinUNETR through
the contrastive loss objective’s augmentations, making it train substantially longer than the other methods.

6https://github.com/MIC-DKFZ/batchgenerators


