EMoTive: Event-guided Trajectory Modeling for 3D Motion Estimation

Supplementary Material

1. The Details of EMoTive Pipeline

Here, we provide more details about the EMoTive frame-
work.

1.1. Spatio-temporal Feature Encoder

Spatial Feature Encoding. Building upon established ar-
chitectures in optical flow estimation [? ?], EMoTive em-
ploys two same 2D convolutional networks to extract la-
tent spatial representation f5,, : RPs*HpXWb and con-
text representation f. from the Event Voxels. Specifically,
we obtain the two Event Voxels from adjacent time V7 :
REBXHXW yt . REXHXW The bins B is set to 7. Both
voxels are processed by the spatial feature encoder to extract
the spatial information at adjacent time, while the latter one
is processed by the context feature encoder in the mean-
time for initializing motion information and mask features.
The spatial feature encoder uses a 2D spatial convolutional
layer with residual blocks to downsample the Event Voxel
V, producing spatial features f,,, : RPs*H0>xWb Here,
Hp = H/8, Wp = W/8. The context feature encoder
uses the same structure but outputs initialized motion in-
formation and mask features for upsampling via ReLU and
Tanh activation functions.

Temporal Feature Encoding. For temporal feature
extraction, we apply a 1D convolution encoder operating
on the Event Kymographs (K, K,). The whole encoder
framework is designed following the spatial encoder, ex-
cept replacing the 2D convolution with 1D. The Event
Kymographs will firstly be evenly divided into subblocks
based on the N, temporal anchors to form the sequence
Koys = {Kay,s(1), ..., Kyzjy,s(Na)}. The encoder op-
erates on each subblock and outputs D;-dimensional tem-
poral features. Meanwhile, progressive spatial downsam-
pling is performed to align with the spatial feature. This
encoder outputs two complementary temporal feature ten-
sors: fpy : RNeXDixXHp and f, .« RNaXDixWb pregery-
ing axis-specific motion pattern.

1.2. Spatio-Temporal Trajectory

The parameterized trajectory in the form of a non-uniform
rational B-spline is given by:

_ 2 Nip(ywiPi(z,y)

T(ta €L, y) - n ’ (1)

>oi Nip(t)wi
where N; ,(t) is the p-th degree B-spline basis function
function with non-uniform knot vector T = {t1,...,tm},

w; € RT represents the event-adaptive weight and P; € R?
is the i-th control point from the set P = {P1,...,P,}.

The spline basis function in this paper adopts the Cox-de
Boor recursive formula:

B 1 ift; <t < tit1
Nio(t) = { 0 otherwise ’)
t—t;
Nim(t) = L t.Ni,p—l(t) +
+p T W
t; —t
P N (t), 3)

tivpr1 — i1

where ¢; represents the node vector. For a clamped NURBS
curve of degree p with n control points, the knot vector
contains m = n + p + 1 elements, with only n — p in-
termediate knots ¢, € (fp41,tn+1) being adjustable. The
trajectory 7 models pixel displacement through temporal
evolution, where density-aware adaptation adjusts both knot
vector distribution T and weight {w; } values, while control
points are updated via spatio-temporal dual cost volumes.

1.2.1. Spatio-temporal Query

For each pixel p = (z,y) at at reference time ¢t = 0, we
sample its warped position p; = p + 7 (¢, x,y) along the
NURBS trajectory. At each queried timestamp {#; ;}7_,
from density adaptation, we extract neighborhood correla-
tion within radius r from the cost pyramid:

N(p:) ={p: +p|dp € {—r,...,r}z}, 4)

where bilinear interpolation handles subpixel coordinates.
The radius is set to 4 in this paper.

1.2.2. Feature Fusion

We combine three information streams for control point
update: (1) Temporal cost volumes at adaptively sampled
{ti,;}; (2) Spatial cost volume from end-time displace-
ment 7 (1,z,y); (3) Context representation f. from spa-
tial feature encoding. These are concatenated into a spatio-
temporal feature 7 € R *Wxd through convolutions. The
temporal cost volumes and spatial cost volume will be con-
cated as the dual spatio-temporal cost volume, combined
with parameters of control points to get the latent motion
feature from motion encoder. The motion encoder is com-
posed of dual branches with 2D convolution. Then, the la-
tent motion feature is concated with context representation
fe to compose the final spatio-temporal feature. The num-
ber of control point iterative refinements is set to 6.

1.3. Motion in Depth Estimation

The motion in depth component M can be derived from
the temporal gradient of the trajectory 7. Assuming a non-

rotating rigid body under perspective projection with con-
stant velocity in world coordinates, we establish the depth
motion relationship:

71 VoAt + Ax
= = = At=t; —t 5
Zo M n At + Az’ ! 0 ©®)

where Az and (v, v1) represent the displacement and ve-
locities of the object along the x-axis between times ¢y and
t1, respectively (complete derivation provided in supple-
mentary material).

To elaborate further, consider a common scenario: a non-
rotating rigid body using a pinhole camera model, the veloc-
ity of an object relative to the camera along the x-axis can
be expressed as:

V, — 2V,
—

= (6)
Here, we normalize the pixel coordinates x;, and focal
length f such that z = %T” Z represents the object’s rel-
ative depth in the camera coordinate system, while V, and
V., denote the 3D motion velocities of the object along the
x-axis and z-axis, respectively. The term v represents the
instantaneous velocity along the x-axis in the image plane,
with the same expression applying to the velocity projection
along the y-axis, denoted as u. Assuming the object’s 3D
motion velocity remains constant in the real-world coordi-
nate, we examine the projected velocity vy and v; at times
to and ¢, respectively. This leads to the following equation:

Zl 1 — Xo Zl
Y - | 7
B S T 2 @

where x(and x; represent the positions of the object along
the x-axis at times ¢ and ¢, respectively. And the veloc-
ities along the z-axis, V, in Eq. (6) is replaced under the
constant assumption: V, = Zti:i". By re-organizing the
above equation, we can obtain the form of motion in depth
as follows:

A vo(th —to) + (x1 — 20)
— =M= . 8
Zy v1(t1 —to) + (21 — 20) ®

Given the starting observation position and time xg, o set
to 0, we can obtain:

M — vot1 + 1)

vit1 + 1
Once the expression for the object’s motion trajectory 7T is
obtained, its time gradient 7”(¢) can be estimated, corre-
sponding to the instantaneous velocity (v, u). The gradi-
ent of the parameter ¢ for the non-uniform rational B-spline
(NURBS) curve used in this paper is given by the following:

(v,u) =T'(t) =
Zi Ni,p(t)wi ’
p p
N y(t) = ———Nip-1 — ————Niy1p1.
(1) tigp—ti " ' titpr1 — tit1 el
(11)

Combined with Eq. (9), the estimation of motion in depth
based on the trajectory is as follows:

T'(to)t1 + T (t1)

M=o Iy
Tt + T

T (to)t1 — T (t1)t1
T'(t1)ts + T (t1)
(12)

The final multi-view estimation algorithm of motion in
depth is shown in Algorithm 1.

Algorithm 1 Motion in Depth Multi-View Estimation Pro-
cess

INPUT: Trajectory 7 (t), timestamps: {to,t1,...,tx}
OUTPUT: Motion-in-depth at tj: My

1: Retrieve trajectory values at each time point
{T(t0)> T(t1)7 s ?T(tk)}

2: Compute trajectory time gradients (instantaneous ve-
locities) at each time point according to Eq. (11)
{T"(t0), T'(t1),..., T'(tr)}

3: Multiply the initial instantaneous velocity by
each timestamp to obtain the initial path estimate
{T"(to)t1, T (to)ta, ..., T'(to)tr}

4: Multiply the instantaneous velocity at each time point
by the respective timestamp to get the endpoint path
estimate {77 (¢t1)t1, T'(t2)ta, ..., T (tx)tr}

5: Following Eq. (9), combine the trajectory, initial
path estimate, and endpoint path estimate to com-
pute depth motion estimates at each time point
{Mq1, Mo, ... , My}

6: According to the multi-view relationship, convert depth
motion observations from different times to the same
time point, yielding a series of depth motion estimation
attime t5: {Mq g, Mok, ..., Mk}

7: Combine historical observations from different time
points to stabilize the depth motion estimate at t:

My, = %ZyMlk

1.4. Parameter Upsampling

Since the spatiotemporal information for motion estimation
comes from downsampled features, its output (including
motion trajectory, optical flow, and depth motion) is at 1/8
of the original resolution. In this paper, the mask obtained
from the context feature encoder is used to upsample the

motion estimation output to full resolution. Specifically, the
motion parameters at lower resolutions are first expanded
using a 3 x 3 grid, and then a convex combination is per-
formed based on the mask (which has been normalized per
channel using the Softmax function) to upsample and obtain
the motion estimation results at full resolution.

Dynamic objects Weather Maps

s

Carla Rendering

Inverse

— o Optical

Flow Forward optical flow o

DVS
Voltmeter

t
Event Stream

Figure 1. Data Simulation process based on Carla Simulator

2. Data Collection Process

We employ the Carla simulator [?] to generate the 3D mo-
tion dataset CarlaEvent3d in a driving environment. Carla
provides realistic simulations of various weather conditions,
as well as optical flow on the camera plane and relative
depth labels during the driving process. For event gener-
ation, we first leverage the UE4 engine in Carla to produce
high-frame-rate video and then simulate events using the
DVS Voltemter algorithm [?] integrated into the Carla sim-
ulation workflow. The detailed data generation process is
illustrated in Fig. 1. Ultimately, we obtained 75 sequences
across diverse environments—including rain, fog, and night
scenes—resulting in a total of 22,125 event-image-3D mo-
tion labels tuples.

2.1. Forward Optical Flow Generation

Generating optical flow via the Carla simulator presents two
major challenges: first, the precision of the optical flow is
limited to 10 digits in each direction; second, the simulator
produces backward optical flow rather than the forward op-
tical flow that is commonly used. This precision limitation
arises because Carla employs the Emissive Color property
of UE4 materials to output optical flow, yielding up to three
channels of float16 color with each channel providing
up to 10 bits of valid information. To enhance accuracy, we
utilize two independent materials to encode the horizontal
and vertical components of the optical flow. Each material
continues to use Emissive Color, but the first ten bits and
the last ten bits of the optical flow are encoded into separate
channels, thereby improving the final output quality. For
forward optical flow generation, we adopt the efficient In-
verse Optical Flow algorithm [?] and combine it with the
depth map to transform the backward optical flow into for-
ward optical flow. Moreover, since Carla provides instance
segmentation results, we further refined the algorithm so
that the inverse computation of the matching pixel position
accounts for both depth approximation and semantic label
consistency, ultimately yielding more accurate forward op-
tical flow estimates.

2.2. Motion in Depth Generation

The depth motion label is computed by warping the depth
value from the target moment to the initial moment using
the forward optical flow:

Bt @)

—_— 13
Zo@) 13)

where Z; is the target moment depth map, Z; is the ini-
tial moment depth map, and v represents the forward opti-
cal flow. To address instability and uncertainty in depth la-
beling at object boundaries, we mask out estimation results
near these boundaries.

After obtaining the forward optical flow and motion in
depth, we combine the initial depth value with the camera’s
internal parameters to derive the scene flow.

3. Comprehensive Experimental Results

In this section, we present additional experimental results
for 3D motion estimation.

3.1. Performance in Different Scenes

We evaluated our method across various scenes in Car-
laEvent3D, including rain, fog, night, cloudy daytime,
sunny, and dusk, as shown in Fig. 2a. Even under challeng-
ing conditions—such as low-light noise, insufficient con-
trast, and rainwater interference—EMoTive achieved excel-
lent motion estimation, demonstrating robust algorithmic

Synthetic | Optical Instance —— Environment
Datasets year | "ol Flow Depth Seementation Lighting Weather
£ Daytime Nighttime Sunset|Cloudy Foggy Rainy

MVSEC [?] 2018 R v 4 b 4 4 4 X 4 b 4 b 4
DSEC [?] 2020 R v v b 4 4 4 4 4 b 4 b 4
Ekubric [?] 2023 S v v b 4 v b 4 X 4 b 4 X
KITTI-Event [?] 2023| R+S v v b 4 v b 4 b 4 4 b 4 X
FlyingThings-Event [?]| 2023 S v v b 4 v X X v X b 4
BlinkVision [?] 2024 S v v b 4 v b 4 X 4 b 4 b 4
CarlaEvent3d 2024 S v v 4 4 4 4 v 4 v

Table 1. Related motion estimation dataset based on event camera.

Optical Flow N
EPE}

Motion in Depth95 N
log-mid]

Expansion TPCV —ScaleFlow ——Scale++ ——EMoTive(Uniform) -——EMoTive

(a) Evaluation of Motion estimation performance in different environ-
ments. N:Nighttime, D:Daytime, S:Sunset, C:Cloudy, F:Foggy, R:Rainy.

160 B
Expansion

Scale++

TPCV

Scale
EMoTive(Uniform)
EMoTive

1404

120 -

100 -

80 1

60

40 -

20 A

0

0 20 2 60 80 100 120
(b) The plot for motion amplitude estimation capability

Figure 2. Verification of Motion estimation ability

stability. Notably, in foggy conditions, methods like Ex-
pansion experienced a significant decline in optical flow es-
timation (a decrease of 2.48 px in accuracy), whereas EMo-
Tive exhibited only a 1.01 px change, thereby maintaining
a higher degree of accuracy.

3.2. Performance of Motion Amplitude Estimation

To assess the capability of motion amplitude estimation, we
evaluated the methods over a range of amplitudes from 0 to
120 px/100ms. Accuracy was quantified by the standard de-

viation within different motion intervals; a smaller standard
deviation indicates a closer approximation to the true mo-
tion and, hence, better estimation accuracy. The validation
results are presented in Fig. 2b. The findings reveal that
as the motion amplitude increases, the performance of all
methods deteriorates, underscoring the significant challenge
posed by fast motion. However, the proposed EMoTive
method maintains lower standard deviations at high speeds
and exhibits a relatively consistent error range across differ-
ent motion intervals. This outcome indicates that the event-
guided non-uniform trajectory design provides robust track-
ing performance across various motion intensities, thereby
enabling stable motion estimation.

4. Result Visualization on CarlaEvent3D

To illustrate the motion estimation performance, we present
additional visualizations on the CarlaEvent3D dataset
across various scenes. These visualizations include images
at the start and end moments, the event sequence input,
event voxel projection, event kymograph projection, and the
motion estimation outputs from several methods, includ-
ing our proposed EMoTive model (see Figs. 3 to 8). The
results demonstrate that EMoTive achieves clearer spatial
boundaries in both optical flow and depth motion estima-
tion. Moreover, for fast-moving objects, its 3D motion es-
timation is more comprehensive and accurate. In particular,
the non-uniform curve representation in EMoTive yields a
motion estimation distribution that more closely aligns with
the ground truth, resulting in a smoother depiction of mo-
tion.

5. Limitations

The current spline representation has limitations, such as
the absence of long-term temporal integration and difficulty
in distinguishing nearby homogeneous objects, which may
lead to incomplete object observations in certain scenarios.

Overlayed Image Voxel Kymograph

Expansion

a
!
‘1

Scale++ EMoTive(Uniform)
w‘; - ey _
EMoTive Ground Truth

Figure 3. Qualitative comparison on the CarlaEvent3D dataset (daytime). The left is optical flow and the right is motion in depth estimation.

——— a

— —
Kymograph

Overlayed Image

Expansion TPCV

Scale++ EMoTive(Uniform)

EMoTive Ground Truth

Figure 4. Qualitative comparison on the CarlaEvent3D dataset (sunset).

— '-—.-:q—‘_—E _—!

Overlayed Image Voxel Kymograph

Expansion

EMoTive(

EMoTive Ground Truth

Figure 5. Qualitative comparison on the CarlaEvent3D dataset (nighttime).

Overlayed Image

Event

|

tllj

,‘

PEre

i — —.
Pl 2 — -
Voxel Kymograph

TPCV

<go—

EMoTive(Uniform

-

——

EMoTive

Ground Truth

Figure 6. Qualitative comparison on the CarlaEvent3D dataset (rainy).

Overlayed Image

Expansion

Event

—
F—

Voxel

e
Kymograph

| —

TPCV

.

Sca

le++

EMoTive(Uniform)

2

EMoTiv

Ground Truth

Figure 7. Qualitative comparison on the CarlaEvent3D dataset (cloudy).

Overlayed Image

1’ " g il

L - = .

ﬂﬁ[,

i —

L e—
Kymograph

Expansion

|

Sca

le++

EMoTive(Uniform)

EMoTive

Ground Truth

Figure 8. Qualitative comparison on the CarlaEvent3D dataset (foggy).

	The Details of EMoTive Pipeline
	Spatio-temporal Feature Encoder
	Spatio-Temporal Trajectory
	Spatio-temporal Query
	Feature Fusion

	Motion in Depth Estimation
	Parameter Upsampling

	Data Collection Process
	Forward Optical Flow Generation
	Motion in Depth Generation

	Comprehensive Experimental Results
	Performance in Different Scenes
	Performance of Motion Amplitude Estimation

	Result Visualization on CarlaEvent3D
	Limitations

