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1. Appendix
In this appendix, we provide additional details on our
methodology and experiments. The former includes B-
spline curve modeling and multi-frame trajectory aggrega-
tion, and the latter provides additional experimental results
as well as a demo video on several datasets, including real
& simulated datasets and dense & sparse point tracking
evaluation.

1.1. Method details
B-spline dense and continuous point trajectories.
Given Nc control points {Pi}Nc and basis functions
{Bi,p(t)}Nc with degree p, the continuous point trajectory
T(t) represented by b-spline curve in time variable t is a
collection of piecewise polynomial functions:

T(t) =

Nc∑
i=1

Bi,p(t)Pi. (1)

Based on the Cox–de Boor recursion, the detailed deriva-
tion of basis functions is:

Bc,0(t) =

{
1 ki ≤ t < ki+1

0 otherwise
, (2)

Bc,p(t)=
t−ki

kc+p−ki
Bc,p−1(t)+

kc+p+1−t

kc+p+1−kc+1
Bc+1,p−1(t),

(3)
where k1, k2, k3, . . . , km are m = Nc + p+ 1 knots of the
curve with a non-decreasing order that represent the times
when the pieces polynomials meet. The internal Nc− p+1
knots kp+1, kp+2, . . . , km−p constitute the deformation of
the curve. The beginning and the ending remaining knots
k1, k2, . . . , kp and km−p+1, km−p+2, . . . , km are usually
specified as duplicates of kp+1 and km−p, in order to en-
sure the curve is tangent to the edges of the first and last
control points so that the curve is clamped.

In experiments, we fixed the internal knots to evenly
spaced numbers over a specified interval from 0 to 1, and the
model only needs to learn the coordinates of control points
{P}Nc ∈ R2×Nc×H×W to model the continuous trajectory
T of every pixel, where H×W is the image size. The head
and tail of the modeled trajectory coincide with the start and
end control points P1 and PNc

.

Multi-frame optical flow and trajectories accumulation.
Existing parametric motion modeling methods are fixed in
the number of frames they can handle, e.g., BFlow [7] is
limited to between two frames, and CPFlow [12] hard to get
benefit for more than 4 frame inputs, resulting in suboptimal
long-term trajectory modeling. Inspired by the practice of
multi-frame optical flow aggregation [14, 17], we propose
a new multi-frame curve trajectories accumulation strategy
to handle long-term videos with arbitrary frames.

In optical flow-based frameworks such as AccFlow [17]
and MFT [14], multi-frame optical flows are usually com-
bined based on warping operations. Given the the previous
global flow F1→t and local flow Ft→t+1, representing the
motion displacements from time 1 to t and t to t + 1, re-
spectively, the aggregated current global flow F1→t+1 from
time 1 to t+ 1 can be computed as follows:

F1→t+1=

{
F1→t+Warp(Ft→t+1,F1→t) if V1→t(x)=1,

F1→t+Fusion(Ft→t+1,F1→t) if V1→t(x)=0,

(4)
where V1→t(x) indicates whether the point x from time
1 is visible at time t. Warp is the backward warping op-
eration [3], which is a fundamental operation in optical
flow that allows sampling pixel values or features from
one frame to reconstruct another frame using a given flow
field. Fusion addresses occlusion issues by integrating
additional residual flow prediction where pixels are oc-
cluded and cannot be directly aggregated. This process
first captures local motion cues from neighborhood fea-
tures using a sub-network module and then infers global
motion through visibility-based softmax fusion, similar to
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AccFlow [17]. By combining both local and global mo-
tion information, Fusion ensures a more accurate and co-
herent optical flow estimation in occluded regions. Notably,
the backward warping operation has an inherent error as it
requires integer sampling with floating-point coordinates,
i.e., Warp(a,b)(x) = a(x + b(x)). Besides this, opti-
cal flow and visible area estimates with insufficient accu-
racy also affect the reliability of multi-frame aggregation.
Therefore, an additional post-refinement is still necessary
even in unoccluded areas [1, 17]. As a result, we addition-
ally introduce a refinement sub-network to estimate the flow
update ∆Ft and compute Warp(Ft→t+1,F1→t) + ∆Ft or
Fusion(Ft→t+1,F1→t) + ∆Ft to reduce the above errors.

In contrast, multi-frame curve aggregation also considers
how to keep the shape of the subcurves while aggregating
the curves. Denote the previous global curve as T1→t with
(t−1)×Nc control points, which represents the aggregation
of t − 1 sub-curves T1→2, ...,Tt−1→t from time 1 to t. If
we get the local sub-curve piece as Tt→t+1 with Nc control
points from time t to t + 1, we can propagate the current
global trajectory T1→t+1 with t × Nc control points from
time 1 to t+ 1 by:

T′=

{
Warp(Tt→t+1,T1→t,Ot)+∆Tt if V1→t(x)=1,

Fusion(Tt→t+1,T1→t,M
global
1→t )+∆Tt if V1→t(x)=0,

T1→t+1(x) =
[
T1→t(x),T

′(x)
]
,

(5)
where [, ] aggregates the control points of two sub-curves to
create a more complex smooth curve. V1→t is the visible
mask of each point from the initial frame to the t-th frame,
and δTt is the trajectory update used for uniformly refine-
ment in the global trajectory accumulation process, both of
which are estimated by the trajectory decoder.

Taking two curves T1 and T2 with N1 and N2 con-
trol points {Pi}N1 and {Qi}N2 respectively as an example,
the aggregation process smoothly connects the two curves
while ensuring the resulting curve goes through the end-
points of the sub-curves, i.e., the first start point P1, the first
endpoint PN1

(overlapped with the second start point Q1),
and the end point of QN2

. To achieve this, we need to en-
sure that both the position, tangent and curvature (0th, 1st,
2nd order derivatives) are continuous at the position of the
connected points, i.e., Q′

1 = PN1 , Q′
2 −Q′

1 = s1(PN1 −
PN1−1), and Q′

3 − Q′
1 = s2(PN1 − 2PN1−1 + PN1−2),

where s1, s2 are the scaling factors usually set to 1, Q′ rep-
resent the updated control points of the second curve. This
process is included in the Align operation along with the
trajectory updates ∆Tt prediction. As a result, the aggrega-
tion process can be expressed as:

[T1,T2] =
{
{Pi}N1 ,Align

(
{Qi}N2

)}
, (6)

where the control points of the original first curve and the
control points of the updated second curve are concatenated

together to get N1 + N2 control points. Then the corre-
sponding modifications get N1 +N2 + p+ 1 knots, which
gives the aggregated long-term global trajectory. We sim-
plify the expression of the above procedure in Sec. 3.1,
i.e., Align consists of the third-order alignment and resid-
ual ∆Tt update from two sub-curves to a global curve.

Framework. We chose DOT as our code base, and the
encoder structure is the same as RAFT’s. In Fig. 1 and
L299-305 of the main paper, the image and event features
are not fused at the extraction step but are merged to obtain
the local motion representation M local after the local cor-
relation (consistent with RAFT) is computed. Depending
on the network depth, the intermediate representations have
dimensions from 32 to 256, and both local and global mo-
tion representations are 128. In the local motion estimation
step, the trajectory decoder takes M local along with refer-
ence frame and event features as input and outputs a tensor
of size (Nc×3)×H×W. The first two channels are the con-
trol points and the rest channel is the visibility map. Warp
and Align are differentiable parameter-free pure transfor-
mations, and Fusion is a fusion subnetwork.

1.2. Comparison with Feature Tracking
Our task of spatially dense point tracking is fundamentally
more challenging than conventional sparse feature track-
ing. Unlike feature tracking, which focuses only on se-
lected salient points, our method aims to track all image
points across time, including those in low-texture or oc-
cluded regions. This dense requirement makes a direct com-
parison with event-based sparse feature tracking methods
(typically evaluated on ED or EDS datasets) infeasible. In-
stead, we focus on more appropriate baselines such as dense
TAP [2, 13] and optical flow [14, 17] methods.

Several prior event-based works propose related motion
estimation methods, but face limitations in terms of appli-
cability and evaluation. BFlow [7] models local curve tra-
jectories and conducts experiments only on synthetic Mul-
tiFlow and real DSEC datasets. BlinkFlow and BlinkTrack
are entirely based on synthetic Blender data (for both im-
ages and events), and the BlinkTrack dataset has not been
released publicly, making fair evaluation impossible. FE-
TAP [11] aims to combine events and TAP, but is not open-
source at the time of writing. Currently, DSEC remains
the only real-world dataset that provides high-quality events
with dense motion annotations suitable for our task. Other
real event datasets used for sparse feature tracking are not
directly applicable.

In contrast, our evaluation strategy leverages real RGB
frames from the TAP benchmark to simulate events, rather
than using entirely synthetic data. Such Sim&Real eval-
uation protocols are widely adopted in prior works like
BFlow [7], AccFlow [17], and DOT [13]. In addition to



Input images with GT query points: frame 1, 11, 34, 56

DOT: frame 11, 34, 56Init Coords

CoTracker: frame 11, 34, 56

Ours: frame 11, 34, 56

Input events: frame 1, 6, 11, 22, 34, 45, 56

Input images with GT query points: frame 1, 7, 19, 27

DOT: frame 7, 19, 27Init Coords

CoTracker: frame 7, 19, 27

Ours: frame 7, 19, 27

Input events: frame 0, 3, 7, 13, 19, 23, 27

Figure 1. Visual comparisons of long-term dense point tracking on the pigs and motocross-jump sequences of TAP-Vid-DAVIS [2] dataset,
with the ground-truth sparse query points of input images.

the real DSEC dataset, we also include qualitative results
on the real-world ERF-X170FPS dataset to further support
our conclusions. We believe that our use of both simulated
(CVO, TAP-Vid) and real (DSEC, ERF-X170FPS) event
data aligns with standard practices in dense point tracking,
and sufficiently demonstrates the effectiveness and practi-
cality of our proposed framework.

1.3. Experimental details

Datasets. We follow the common evaluation practices in
CoTracker [9] and DOT [13]. The training set MOVI-F [8]
contains over 10,000 videos with 7 frames each. The CVO
test [17] and extended [13] sets contain ∼500 videos with 7
and 48 frames respectively. The real test TAP-Vid-DAVIS
benchmark [2] includes 30 videos with ∼100 frames each.

We simulate events for these three training and evaluation
datasets using the vid2e [4] simulator. For the dense CVO
dataset, we report the dense absolute error EPEall/vis/occ

for all, visible and occluded points, as well as occlusion ac-
curacy OA for estimated visible mask computed with IoU
metric. For the sparse TAP-Vid-DAVIS dataset, we fol-
low TAPNet [2] by reporting average Jaccard AJ, position
accuracy <δxavg, and occlusion accuracy OA. Additionally,
we adopt the real-captured event-based optical flow dataset
DSEC [5, 6] to verify the adaptation capacity, which con-
tains 18 videos with ∼700 frames each. We follow the
DSEC benchmark procedure and report the average of the
endpoint error EPE and the angular error AE to measure the
optical flow accuracy.



Image frames 1, 20, 30, 47

DOT Tracks: frame 20, 30, 47GT Track 47

AccFlow: frame 20, 30, 47

Ours Tracks: frame 20, 30, 47

GT Mask 47 DOT Masks: frame 20, 30, 47 Ours Masks: frame 20, 30, 47

Image frames 1, 20, 30, 47

DOT Tracks: frame 20, 30, 47GT Track 47

AccFlow: frame 20, 30, 47

Ours Tracks: frame 20, 30, 47

GT Mask 47 DOT Masks: frame 20, 30, 47 Ours Masks: frame 20, 30, 47

Figure 2. Visual comparisons of dense point tracking on the CVO extended set [13] with the ground-truth dense point coordinates and
visible mask at the last (48-th) frame.

Implementation details. We implement our model with
PyTorch, train it on MOVI-F and directly evaluate it
on CVO and TAP-Vid-DAVIS datasets without any fine-
tuning. Following DOT [13], our model is trained for 500k
steps on 4 × NVIDIA L40 48G GPUs, using the Adam
optimizer and OneCycle learning rate decay with a max-
imum of 10−4. We also adopt the strategy of upgrading
from multi-frame sparse to dense tracking in DOT to en-
sure temporal consistency. Following the practice of exist-
ing methods [16, 18], we convert the raw events into a grid
representation as the model input, with the temporal bins
set to B = 5. We choose 3 frame intervals as the randomly
selected training samples, along with the random selection
of up to 10 frames in different frame intervals. The loss hy-
perparameters are set to 1.0, 0.1, 0.1. Unless specifically

mentioned, we evaluate our models and competitors on the
same PC with a single RTX 3090 GPU.

Qualitative visual comparisons. Due to the length limi-
tation, we provide more visualization results of point track-
ing in this appendix. Fig. 1 and Fig. 2 show the results on
the TAP-Vid-DAVIS and CVO datasets, where we achieve
better point tracking performance compared to recent com-
petitive methods It is worth noting that the TAP-Vid-DAVIS
dataset [2] only provides sparse query point trajectories for
each frame, so we plot the positions of the ground-truth
query points directly on the input image, while initial point
coordinates (Init Coords) represent the initial coordinates of
dense point tracking. In contrast, the CVO extended set [13]
has only the last frame of the dense point motion vectors, so



Input low-FPS video and events; GT query points CoTracker

DOT EDCPT (Ours)

TAP-DAVIS: horsejump-high

Input low-FPS video and events; GT query points CoTracker

DOT EDCPT (Ours)

TAP-DAVIS: parkour 

ERF-X170FPS: test_0005 

CoTracker

DOT EDCPT (Ours)

Input low-FPS video and events

ERF-X170FPS: test_0033 

CoTracker

DOT EDCPT (Ours)

Input low-FPS video and events

Figure 3. Screenshots from our demo video, including comparisons of dense and continuous point tracking trajectories on the commonly
used TAP-Vid-DAVIS benchmark [2] and the real-world ERF-X170FPS dataset [10].



Figure 4. Screenshot of the DSEC optical flow leaderboard [5] on Mar. 7, 2025 from https://dsec.ifi.uzh.ch/uzh/dsec-
flow-optical-flow-benchmark. Our EDCPT achieves the first rank in the DSEC optical flow benchmark.

we provide the visualization of the ground-truth points (GT
points) from the Init Coords of the first frame to last frame.

Demo video on the real-captured event dataset. The
demo video is uploaded to https://figshare.
com / articles / media / EDCPT _ demo _ video /
29656805. In this appendix, we provide screenshots
of the demo videos. Fig. 3 shows the video screenshots
for the comparison results of dense and continuous point
tracking in four scenes, including the horsejump-high and
parkou sequences on the TAP-Vid-DAVIS dataset [2], and
the test 0005 and test 0033 sequences on the real-captured
ERF-X170FPS dataset [10]. We chose to compare with two
recent SOTA methods, CoTracker [9] and DOT [13]. The
visualization of dense and continuous point tracking trajec-
tories is shown in three separate forms: query point trajec-
tories, grid trajectories, and dense point coordinate shifts.

In particular, the ERF-X170FPS dataset is proposed in
CBMNet [10] originally for video frame interpolation in
highly dynamic scenarios. Both its image and event data
are real-captured and of high quality, we utilize it to further

OursDOTCoTrackerImage

Figure 5. Comparisons of non-linear motion modeling capabilities
on typical real-captured data.

validate the applicability of our framework on real-world
data. Since this dataset lacks motion annotations and query
point coordinates, we only show grid trajectories and dense
point coordinate shifts. As shown in the demo video and
screenshots in Fig. 3, our framework achieves better point
tracking performance compared to Cotracker and DOT for
small objects (soccer ball in test 0005) and curve motion
(camera rotation in test 0033). In particular, in Fig. 5 we
provide a typical case of non-linear motion with players
kicking a soccer ball. We can find that the curvilinear mo-
tion representation is more suitable for modeling real-world

https://dsec.ifi.uzh.ch/uzh/dsec-flow-optical-flow-benchmark
https://dsec.ifi.uzh.ch/uzh/dsec-flow-optical-flow-benchmark
https://figshare.com/articles/media/EDCPT_demo_video/29656805
https://figshare.com/articles/media/EDCPT_demo_video/29656805
https://figshare.com/articles/media/EDCPT_demo_video/29656805


Table 1. Ablations at standard frame rate.

Model
CVO DAVIS

EPEall/vis/occ ↓ AJ / <δxavg ↑
CoTracker 1.89 / 0.63 / 7.05 61.1 / 74.6

DOT 1.83 / 0.59 / 6.95 61.6 / 75.5

DOT+Events 1.79 / 0.57 / 6.80 62.8 / 75.9
DOT+Curve (image only Abl.) 1.88 / 0.61 / 6.84 62.1 / 75.7

Ours (full model) 1.76 / 0.55 / 6.73 63.8 / 76.3

non-linear motion.

Experimental result on the DSEC benchmark. To qual-
itatively validate the applicability of our scheme on real cap-
tured events data, we conduct experiments on DSEC [5] ,
a widely used benchmark for optical flow estimation, and
submit the results on the test set to the DSEC online server.
In Tab. 3, we compare the performance of various SOTA
methods under different training and input settings, here we
also provide a screenshot of the DSEC online leaderboard
in Fig. 4. Our proposed EDCPT achieves the first rank in
the DSEC optical flow benchmark.

Zero-shot (Sim2Real) evaluation. We need to clarify
that the standard event simulation pipeline [4], video in-
terpolation (VFI) + event simulation (ESIM [15]), intro-
duces new information through additional motion priors
from the VFI model, which is pretrained on large-scale
video datasets. So we pre-train the proposed model on
large-scale simulated data with simulation events and ver-
ify the generalization performance of the model by zero-
shot evaluation across datasets. In addition to the zero-shot
experimental results on TAP-Vid-DAVIS and CVO in the
main paper, our TAP results on ERF-X170FPS (Fig. 3 and
Fig. 5) are also zero-shot. We also submit the pre-trained
model before finetuning to the DSEC benchmark, achiev-
ing EPE/AEE: 0.82/2.52, outperforming GMA’s 0.94/2.66.

Ablations at standard frame rate. In Tab. 3 and Tab.
6 of the main paper, we provide ablations without input
events and curve representations at low frame rate (skip 2
or 3 frames), focusing on evaluating the ability to model
nonlinear motion. We have provided ablations of our model
by interpolating with linear and quadratic motion assump-
tions in Tab. 6. On the other hand, the results for the base-
lines (including DOT [13]) in Tab. 6 are obtained by tak-
ing the linear motion assumption. Here we reevaluate with
the quadratic assumption, and get a slight raise of DOT’s
DAVIS results to 50.9 / 65.7, but it is not as strong as learn-
ing curves such as ours.

Moreover, we provide more results at standard frame rate
(no skip frames) in Tab. 1. The results consistently show

that our model benefits not only from the ability of the curve
representation to handle complex nonlinear motion, but also
from the concise and valuable motion information in events,
allowing for more accurate point tracking.

Longer sequences. We provide more qualitative compar-
isons of the MOVi-F pre-trained model on another two
TAP-Vid sub-benchmark in Tab. 2, verifying the advantages
of ECDPT on longer sequences. Note that for efficient in-
ference, num tracks is set to 1024 for DOT and ECDPT.
This observation is consistent with that in the main paper
on TAP-DAVIS.

Table 2. More quantitative results on TAP-Vid benchmark.

Method Kinetics (First) RGB-S. (Strided)
AJ ↑ <δxavg ↑ OA ↑ AJ ↑ <δxavg ↑ OA ↑

TAP-Net 38.5 54.4 80.6 59.9 72.8 90.4
CoTracker 44.8 63.2 81.2 74.1 85.2 92.3

DOT 48.3 61.1 83.7 81.2 90.0 94.1
EDCPT (Ours) 49.7 63.2 84.5 83.3 91.4 94.9
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