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Supplementary Material

A. Implementation Details
In this section, we first elaborate on the process of region-
unique prompt switching using Gumbel Softmax and the
design of the keys Kl of region-unique prompts. Secondly,
we outline the settings of the proposed method, including
the optimizer, learning rate, hyper-parameters, to ensure
the reproducibility of the method. Thirdly, we describe
the overall data flow and model structure. Finally, we ex-
plain the ways to perform incremental learning to expand
the model. Due to the double-blind principle, we will open
source the code at our github after the review.

A.1. Detailed Region-unique Prompt Switching
Process

To enable end-to-end training, we employ a
Gumbel Softmax operation to switch the appropri-
ate region-unique prompts. We first calculate the similarity
between qv and the keys of region-unique prompts, as

dk,j =
exp(qv,kKl,j + ωk)∑

N

m=1 exp(qv,kKl,m + ωm)
, (A1)

where {ωk} are i.i.d random samples drawn from the
Gumbel(0,1) distribution. We compute the region-
unique prompt to assign a centroid to by taking the one-hot
operation of it argmax over all the keys. Since the one-
hot assignment operation via argmax is not differentiable,
we instead use the straight through trick in to compute the
assignment matrix as

d̂ = one-hot(dargmax) + d→ sg(d), (A2)

where sg is the stop gradient operator. With the straight
through trick, d̂ has the one-hot value of assignment to a
single region-unique prompt, but its gradient is equal to
the gradient of d, which makes the whole procedure dif-
ferentiable and end-to-end trainable. After assigning qv to
keys of region-unique prompts, we can easily get the region-
unique prompts response to qv by merging all prompts, as:

p(i)
l,k

=

∑
N

j=1 d̂k,jL
(i)
j∑

N

j=1 d̂k,j
. (A3)

This approach effectively solves the problem of gradient
backpropagation by transforming the argmax process into a
discrete variable sampling process.

Table A1. Ablation on the design of keys of region-unique
prompts.

Method
1-shot

Base Novel HM

Rand 72.14 47.53 57.30
CoOP 73.04 49.08 58.71

A.2. The Design of the Keys of Region-unique
prompts

As described in Sec. 4.2, to ensure stable training and pro-
vide meaningful initial keys for region-unique prompts, we
leverage text embeddings generated by the CLIP text en-
coder following the CoOP[43] approach. Specifically, each
region-unique prompt, which corresponds to a particular
class, is assigned a key that aids in aligning the local fea-
tures of input images. For each key, we use the CLIP text
encoder to produce stable and meaningful embeddings by
feeding it a prompt ε = [V ]1[V ]2...[V ]n[CLASS], where
[V ]i represents vectors with the same dimension as word
embeddings, n is a hyperparameter specifying the number
of context tokens, and [CLASS] denotes the class name’s
word embedding. By processing the prompt ε through the
text encoder, we obtain a key tailored to each region-unique
prompt. This method provides an effective initial value for
the keys, mitigating the convergence issues often caused
by random initialization, especially in few-shot scenarios.
Moreover, it incorporates text modality knowledge, reduc-
ing the risk of overfitting to the limited samples in few-shot
novel classes.

We further carry out an experiment to compare the per-
formance with and without the keys generated by CoOP
on VOC, as shown in Tab. A1. The table shows that with
this key generation method, the model’s ability to learn new
classes is significantly enhanced.

A.3. Settings of the Proposed Method

Table A2. Settings of different datasets.

Dataset Lg M0 Ls h ω

VOC 24 8 8 2 0.7
COCO 40 15 16 4 0.7

During base training, the backbone and the query func-
tion are frozen, all prompts as well as the decoder are
trainable. We use AdamW as optimizer with ϑ1 = 0.9,



ϑ2 = 0.9, weight decay 0.01, and a polynomial learning
rate policy with a linear learning rate warmup. The model
is trained for 20k iterations on VOC and 80k iterations on
COCO with a learning rate of 2 ↑ 10→4 and batch size of
8. During incremental training, we freeze all parameters
but update the expanded stage-specific prompts and region-
unique prompts. For both VOC and COCO, the model is
trained for 400 iterations per step with a learning rate of
2↑10→4 without the learning rate warmup. We compute the
results via single-scale full-resolution images without any
post-processing. The settings of model hyper-parameters
on different datasets are shown in Tab. A2.

Additionally, the pre-defined background classes are
"sky", "wall", "tree", "wood", "grass",
"road", "sea", "river", "mountain",
"sands", "desk", "bed", "building",
"cloud", "lamp", "door", "window",
"wardrobe", "ceiling", "shelf",
"curtain", "stair", "floor", "hill",
"rail", "fence".

A.4. Detail Data Flow and Model Structure
(1) Prompts Generation: The images are input into pre-
trained query function (DINOv2) to get global and local
query features qg and qc which are used to match optimal
prompts, formulated by Eq. (8), Eq. (9) and Eq. (13). (2)
Image and Text Encoding: Image tokens concatenated with
TP, SP and RP are input into each block of CLIP image en-
coder (ViT-B), which outputs the class token g and pixel
features P . The names of each BG and FG classes are in-
put into CLIP text encoder to get text embeddings Tbg and
Tfg . (3) Pixel Decoding: As shown in Fig. A1, CMQE in-
tegrates the image global feature g with text embeddings
Tfg and Tbg to generate class-specific queries Qfg and Qbg

as formulated by Eq. (3). FG isolation separator and BG
refinement separator share the same structures, composed
of three cross-attention blocks. For each block, pixel-wise
features P are input as the keys and values. Qfg and Qbg

are input as the queries of the first block and the output of
each block is input as the queries of the next block. The last
block outputs the final masks (Eq. (4)).

A.5. Incremental Learning
We elaborate on the ways in which the model is extended
during the incremental stage as follow. During incremen-
tal training stage, we need to expand three components: 1)
text embeddings of novel classes, 2) slots of stage-specific
prompts, 3) slots of region-unique prompts.

For expanding text embeddings, we just add novel
classes to foreground text embeddings, which can be de-
notes as T t

fg
↓ R(Ct→1

fg +Ne)↑D, where Ne denotes the num-
ber of novel classes, Ct→1

fg
denotes the number of fore-

ground classes of stage t→ 1.
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Figure A1. Detailed structures of the proposed decoder modules.

For expanding slots of stage-specific prompts, we con-
catenate the expanded A(i)

e ↓ R1↑D,K(i)
e ↓ R1↑D,S(i)

e ↓
R1↑Ls↑D to matrix of stage t → 1. Thereby, the stage-
specific prompts integration of stage t can be formulated
as:

ϖ =Softmax(< qg ↔ [A(i),t→1;A(i)
e
],

[K(i),t→1;K(i)
e
] > /ϱ),

p(i),t
s

=ϖ[S(i),t→1; S(i)
e
] ↓ RLs↑D, (A4)

where A(i),t→1,K(i),t→1,S(i),t→1 denotes the attention ma-
trix, key matrix and stage-specific prompts of stage t→1 for
layer i, p(i),ts denotes the integrated stage-specific prompts.

For expanding slots of region-unique prompts, we con-
catenate the expanded K(i)

le
↓ RNe↑D,L(i)

e ↓ RNe↑D with
matrix of stage t → 1. Thereby, the region-unique prompts
integration of stage t can be formulated as:

p(i),t
l

=Gumbel Softmax(qv[K
(i),t→1
l

;K(i)
le
])

[L(i),t→1;L(i)
e
], (A5)

where Ne denotes the number of novel classes,
K(i),t→1

l
,L(i),t→1 denote the all keys and prompts of

stage t → 1, and p(i),t
l

denotes the integrated region-unique
prompts.

Note that due to the adoption of a switching mechanism,
the number of visual prompts input to the model remain
consistent at different stages, effectively preventing a sig-
nificant increase in computational complexity.



Figure A2. Performance comparison between the baseline and the
proposed method on VOC under different shots.

B. More Ablation Studies
In this section, we first conduct experiments to demonstrate
the effectiveness of MSVP compared to the baseline, and
prove the effectiveness of orthogonality constraints. Sec-
ondly, we perform an ablation study on the scale and types
of query functions. Thirdly, we prove the computation ef-
ficiency of MSVP. Finally, we carry out ablation experi-
ments on the COCO dataset to further validate the proposed
method.

B.1. Effectiveness of MSVP
To further demonstrate the effectiveness of the proposed
MSVP, we compare the performance under different novel
shots between the baseline and MSVP. As shown in Fig. A2,
the performance of the baseline model does not increase
as much as the proposed model with the growth of the
shot. This demonstrates that MSVP effectively boosts
the model’s capacity to learn novel classes by efficiently
switching prompts. In contrast, the baseline model suffers
from diluted information as more visual prompts are added,
leading to inadequate learning of novel classes. Mean-
while, the baseline’s performance on base classes signif-
icantly outperforms that of the model with MSVP, and
improves with more novel class samples. The proposed
MSVP stores knowledge of different stages in independent
visual prompts and switches them dynamically, thus avoid-
ing knowledge of old stages corrupted.

B.2. Effectiveness of Orthogonality Constraints
We add orthogonality constraints to parameters of stage-
specific prompts to avoid interference between existing and
new knowledge and reduce catastrophic forgetting. In this
section, we conduct an experiment on this loss to prove its
effectiveness as in Tab. A3. The table shows that adding
this loss function significantly enhances the performance

Table A3. Ablation on Lorth.

Lorth
1-shot

Base Novel HM

wo 67.35 48.62 56.47
w 73.04 49.08 58.71

Table A4. Ablation on the scale of DINOv2.

Model
1-shot

Base Novel HM

ViT-S 71.62 48.57 57.88
ViT-B 73.04 49.08 58.71
ViT-L 72.68 48.76 58.36

Table A5. Ablation on different query functions.

Pre-train method
1-shot

Base Novel HM

MAE 50.44 39.00 43.98
BEiT 42.95 32.69 37.12

DINOv2 73.04 49.08 58.71

of the base class by 5.69% mIoU, suggesting that it effec-
tively minimizes interference from new knowledge on ex-
isting knowledge and helps prevent forgetting of previously
learned classes.

B.3. Ablation on Query Function

We choose pretrained ViT-B of DINOv2 as the query func-
tion to produce high quality global query features and local
query features. In this section, we conduct an ablation study
on the scale of the query function, as shown in Tab. A4.
The model’s performance improves significantly when the
query function transitions from ViT-S to ViT-B. However,
further scaling from ViT-B to ViT-L results in minimal per-
formance gains, indicating that the larger model size does
not substantially enhance effectiveness in our method.

We also perform experiments to evaluate different types
of query functions, including MAE[44], BEiT[45], and
DINOv2[15], as summarized in Tab. A5. For these exper-
iments, we use ViT-B with various pre-training methods.
The results show that DINOv2 achieves the best perfor-
mance, likely due to its ability to provide both global and
local features with high generalizability, thereby switch-
ing appropriate prompts accurately. In contrast, MAE and
BEiT yield relatively inferior results, which may stem from
their limitations in effectively capturing image-specific dif-
ferences across different stages. Consequently, they strug-
gle to generate tailored prompts that align with the unique
characteristics of images at various stages.



Table A6. Ablation of Different Prompts on COCO.

SA TP SP RP
1-shot

SA Novel HM
↭ 44.98 23.72 31.06

↭ ↭ 48.26 24.65 32.63
↭ ↭ 41.85 24.78 31.13

↭ ↭ 44.24 20.54 28.05
↭ ↭ ↭ 48.85 25.60 33.59

Table A7. Ablation of the Framework on COCO.

Method
1-shot

Base Novel HM
Ours 48.85 25.60 33.59
- FDD 48.18 23.13 31.25
- Lba 45.81 21.92 29.65
- CMQE 44.72 16.57 24.18

B.4. Ablation of Different Prompts on COCO.
We also carry out an experiment of different prompts on
COCO to prove the effectiveness of our method, as shown
in Tab. A6. When simply adding prompts as Eq. (2),
the baseline achieves 44.98% mIoU-B and 23.72% mIoU-
N, which has outperformed previous SOTA methods by
a large margin. Replacing the vanilla prompt expand-
ing strategy with the proposed task-persistent prompts and
stage-specific prompts, the performance increases by 3.28%
mIoU-B and 0.93% mIoU-N. That’s because task-persistent
prompts provide transferable knowledge across stages and
stage-specific prompts extract relevant knowledge from
other stages and enhance it with discriminative knowledge
of the current stage, which offers a flexible way to switch
knowledge of different stages, thereby achieving better abil-
ities to keep old knowledge and learn new classes. Fur-
thermore, with finer-grained region-unique prompts, per-
formance on novel classes further rises to 25.60%, for the
reason that region-unique prompts provide the model with
knowledge of local details of specific classes. The table also
shows that excluding task-persistent prompts leads to a per-
formance decrease on both base and novel classes. It proves
that general knowledge can not only help models maintain
old abilities but also assist models in learning new abilities.

B.5. Ablation of the Framework on COCO.
We also carry out an experiment of the framework on
COCO to prove the effectiveness of our method, as shown
in Tab. A6. Replacing FDD with a single decoder results
in a decrease in performance on novel classes. That’s be-
cause FDD enables the model to process the salient fea-
tures of novel classes and adapt to background changes sep-
arately, alleviating the confusion between novel classes and
the background. Additionally, jointly optimizing the two

Figure A3. Comparison of MSVP and Base on FPS and Memory.

separators with Lba leads to a better performance, which
mitigates the misaligned optimization directions caused by
Lvan. It can also be concluded from the table that CMQE
plays an important role in maintaining base knowledge and
learning novel classes by generating generalizable class em-
beddings for base classes and novel classes.

B.6. Computation Efficiency.
We conduct an experiment to compare FPS and memory us-
age between MSVP and Baseline as the incremental phase
increases, on an NVIDIA A40 GPU using a 512 ↑ 512
image. MSVP exhibits significant advantages in memory
efficiency compared to the baseline. This improvement
stems from our prompt-switching mechanism, which ef-
fectively maintains a constant input sequence length to the
transformer model throughout progressive training stages,
thereby avoiding memory accumulation. While the base-
line shows marginally higher FPS during early incremen-
tal stages (<75 stages) due to the introduced query oper-
ation of MSVP, our method demonstrates superior com-
putational sustainability as training progresses. Notably,
the baseline suffers a sharp FPS degradation as its grow-
ing prompt inventory quadratically increases transformer’s
computational complexity (O(n2)).

We further evaluated the FPS of PIFS, CaLNet, OINet,
and our method on an NVIDIA H20 GPU using a 1024 ↑
1024 image. Results for the 30th stage are shown in
Tab. A8, along with overall 1-shot performance on VOC.
Our method achieves a good trade-off between accuracy and
efficiency.

Table A8. Comparison on FPS and Parameters across Methods.

Method PIFS CaLNet OINet Ours
FPS 27.01 20.76 27.01 13.53
FT Para(M) 58.64 0.001 58.64 0.104
HM(mIoU) 26.7 28.2 28.3 58.7
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Figure A4. Step-by-step segmentation results of our method.
Zoom in for better visualization.

C. Visualization
In Fig. A4, we visualize our step-by-step segmentation re-
sults for novel classes. The figure shows that our method
effectively retains old class knowledge, enabling the model,
even after multiple training rounds, to correctly predict old
class samples. Additionally, our approach demonstrates
strong novel class learning capability, as it can generalize
to other test samples by learning from just one novel class
sample. The visualization results effectively demonstrate
the validity of the proposed prompt-based IFSS method.

D. Discussion
Our framework aligns with the Mixture of Experts (MoE)
paradigm, where TP,SP and RP function as specialized ex-
perts for task-persistent, stage-specific, and region-unique
knowledge. Crucially, the DINO-driven routing mechanism
dynamically selects stage- and region-relevant experts, en-
abling parameter-efficient and context-aware computation.
This design not only reduces redundancy but also embod-
ies a conditional execution strategy—activating only neces-
sary experts per input image, which resonates with broader
trends in modular neural architectures for efficient infer-
ence.
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