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1. Datasets

We use eight multi-view datasets in our experiments, each
described in detail below.

1. BRCA': This dataset is designed for classifying PAMS50
subtypes in breast invasive carcinoma, incorporating
three distinct omics data types: messenger RNA
(mRNA), Copy Number Variation (CNV), and Reverse-
Phase Protein Array (RPPA). It consists of 511 samples,
divided into four categories: Luminal A, Luminal B,
Triple-Negative Breast Cancer, and HER2-positive.

2. KIPAN?: This dataset is designed for kidney cancer sub-
type classification. It integrates three types of omics
data: DNA methylation, miRNA expression, and mRNA
expression. It contains 707 samples, divided into three
kidney cancer subtypes: KICH (Kidney Chromophobe),
KIRC (Kidney Renal Clear Cell Carcinoma), and KIRP
(Kidney Renal Papillary Cell Carcinoma).

3. uci-digit’: This dataset is designed for handwritten digit
recognition. It contains images of digits from 0 to 9, with
2,000 samples divided into 10 categories.

4. Cora*: A widely used benchmark for machine learning
and network analysis, this dataset comprises 2,708 com-
puter science publications. It provides two main views: a
citation network formed by paper citations and content-
related words for each paper. The publications are di-
vided into seven research area categories, such as Case-
Based, Genetic Algorithms, and Neural Networks.

5. Wiki’: This dataset is used for text classification, con-
taining feature representations of 2,866 Wikipedia arti-
cles divided into 10 categories.

6. CCV°: This dataset is used for video classification tasks
and contains consumer videos from YouTube across cat-
egories such as sports, music, and movies. It includes
6,773 video clips.

7. STL10: This dataset is used for image recognition tasks
and includes 10 object classes.

8. YTB10®: This dataset is used for face recognition tasks,
containing 38,654 face images extracted from YouTube
videos.
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Table 1. The influence of pseudo-labels on our model.

Datasets Random  Sinkhorn-knopp k-means  Ours
BRCA 64.24 63.03 60.61 98.79
KIPAN 54.60 54.13 90.64  92.51

uci-digit ~ 29.50 27.60 9340  95.30

Cora 28.33 28.47 2947  76.36
Wiki 22.74 23.46 31.21 65.42
CcCcv 12.86 12.68 3045  34.20
STL10 21.65 21.86 98.98  99.02
YTB10 33.86 33.86 79.08  94.55

2. The influence of pseudo-labels

In our paper, we mentioned that the use of pseudo-label
guidance during the clustering process can lead to unsta-
ble model performance. To validate this hypothesis, we re-
placed our algorithm with pseudo-label induced clustering.
Specifically, we added a constraint term for pseudo-labels
similar to the known class label constraint term in Eq. (3).
There are three methods for generating pseudo-labels: ran-
dom labeling, using the Sinkhorn-Knopp algorithm, and la-
beling with the k-means algorithm. The results are shown
in the Table 1, which demonstrates that different methods of
pseudo-label guided clustering significantly impact model
performance. Therefore, it is essential to use algorithms
that do not rely on pseudo-labels during the process of dis-
covering new classes.



