Intra-view and Inter-view Correlation Guided Multi-view Novel Class Discovery

Supplementary Material

1. Datasets

We use eight multi-view datasets in our experiments, each described in detail below.

- 1. **BRCA**¹: This dataset is designed for classifying PAM50 subtypes in breast invasive carcinoma, incorporating three distinct omics data types: messenger RNA (mRNA), Copy Number Variation (CNV), and Reverse-Phase Protein Array (RPPA). It consists of 511 samples, divided into four categories: Luminal A, Luminal B, Triple-Negative Breast Cancer, and HER2-positive.
- KIPAN²: This dataset is designed for kidney cancer subtype classification. It integrates three types of omics data: DNA methylation, miRNA expression, and mRNA expression. It contains 707 samples, divided into three kidney cancer subtypes: KICH (Kidney Chromophobe), KIRC (Kidney Renal Clear Cell Carcinoma), and KIRP (Kidney Renal Papillary Cell Carcinoma).
- 3. **uci-digit**³: This dataset is designed for handwritten digit recognition. It contains images of digits from 0 to 9, with 2,000 samples divided into 10 categories.
- 4. Cora⁴: A widely used benchmark for machine learning and network analysis, this dataset comprises 2,708 computer science publications. It provides two main views: a citation network formed by paper citations and contentrelated words for each paper. The publications are divided into seven research area categories, such as Case-Based, Genetic Algorithms, and Neural Networks.
- 5. **Wiki**⁵: This dataset is used for text classification, containing feature representations of 2,866 Wikipedia articles divided into 10 categories.
- 6. CCV⁶: This dataset is used for video classification tasks and contains consumer videos from YouTube across categories such as sports, music, and movies. It includes 6,773 video clips.
- 7. **STL10**⁷: This dataset is used for image recognition tasks and includes 10 object classes.
- YTB10⁸: This dataset is used for face recognition tasks, containing 38,654 face images extracted from YouTube videos.

 8 https://www.cs.tau.ac.il/~wolf/ytfaces/

Table 1. The influence of pseudo-labels on our model.

Datasets	Random	Sinkhorn-knopp	k-means	Ours
BRCA	64.24	63.03	60.61	98.79
KIPAN	54.60	54.13	90.64	92.51
uci-digit	29.50	27.60	93.40	95.30
Cora	28.33	28.47	29.47	76.36
Wiki	22.74	23.46	31.21	65.42
CCV	12.86	12.68	30.45	34.20
STL10	21.65	21.86	98.98	99.02
YTB10	33.86	33.86	79.08	94.55

2. The influence of pseudo-labels

In our paper, we mentioned that the use of pseudo-label guidance during the clustering process can lead to unstable model performance. To validate this hypothesis, we replaced our algorithm with pseudo-label induced clustering. Specifically, we added a constraint term for pseudo-labels similar to the known class label constraint term in Eq. (3). There are three methods for generating pseudo-labels: random labeling, using the Sinkhorn-Knopp algorithm, and labeling with the k-means algorithm. The results are shown in the Table 1, which demonstrates that different methods of pseudo-label guided clustering significantly impact model performance. Therefore, it is essential to use algorithms that do not rely on pseudo-labels during the process of discovering new classes.

Inttps://www.cancer.gov/tcga
2nttps://www.linkedomics.org/data_download/
TCGA-KIPAN/
3nttps://archive.ics.uci.edu/dataset/72/
multiple+features
4nttps://linqs.org/datasets/
5nttps://archive.ics.uci.edu/dataset/72/
multiple+features
6nttp://www.ee.columbia.edu/ln/dvmm/CCV/
7nttps://cs.stanford.edu/~acoates/st110/