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Supplementary Material

This supplementary document is organized as follows:

• The intuitive and theoretical explanation for our motiva-
tion is provided in Section A.

• Additional experimental details, including further im-
plementation details, descriptions of other implemented
baselines, and license information for the utilized code
and datasets, are provided in Section B.

• Additional experimental results on different bench-
marks are presented in Section C.

• Additional ablation studies with different parameters are
presented in Section D.

• More case studies and GPT-4V-aided evaluations are
provided in Section E.

• Potential directions for future work are discussed in Sec-
tion F.

A. More Explanation on Motivation
A.1. Intuitive Explanation for TVER

Our method is motivated by a principle in information
theory: H(x|y)≤H(x). Let H(T ) and H(V) denote the
entropy of pure textual and visual attention, respectively.
During LVLM decoding, since the model processes both
image and text simultaneously, we treat the attention dis-
tributions as conditioned on the other modality. This leads
to an approximate theoretical form of Eq. (11): TVER =
H(T |V)
H(V|T ) . Since H(T |V) ≤H(T ) and H(V|T ) ≤H(V), a
higher H(T |V) indicates behavior closer to purely textual
inference, while higher H(V|T ) suggests reliance on visual
priors. To approximate the noisy branch used in VCD and
M3ID, we aim to enhance textual focus and suppress vi-
sual focus, which motivates maximizing TVER for effec-
tive textual enhancement.

B. More Experimental Details
B.1. Benchmarks and Metrics

We conduct extensive experiments on the following
benchmarks:
• POPE [19] is a popular benchmark for assessing object

hallucinations in LVLMs. It tests the models with
yes-or-no questions regarding the presence of specific
objects, such as, “Is there a {object} in the
image?” The images from the benchmark derive from
three existing datasets: MSCOCO [20], A-OKVQA [29],

and GQA [13], and comprises three distinct sub-
sets—random, popular, and adversarial—based on how
the negative samples are generated. For each dataset
setting, the benchmark provides 6 questions per image,
resulting in 3,000 test instances. We evaluate the perfor-
mance of different methods using four metrics: accuracy,
precision, recall, and F1 score.

• CHAIR [28] evaluates object hallucinations through
image captioning, where the LVLMs are prompted
to describe 500 randomly selected images from the
MSCOCO validation set. The performance is evaluated
based on two metrics:

CHAIRI =
# hallucinated objects

# all objects mentioned
, (21)

CHAIRS =
# sentences with hallucinated object

# all sentences
. (22)

• MME-Hallucination [11] is a comprehensive bench-
mark consisting of four subsets: existence and count for
object-level hallucinations, and position and color for
attribute-level hallucinations. Each subset includes 30
images and 60 questions, with two questions per image.
Similar to POPE [19], the benchmark includes yes-or-no
questions, and performance is assessed based on binary
accuracy. Following the official implementation, the
reported score is calculated by combining accuracy
and accuracy+, where accuracy is based on individual
questions, and accuracy+ is based on images where both
questions are answered correctly.

• MMBench [25] is a comprehensive benchmark designed
to evaluate LVLMs’ multimodal understanding and
reasoning abilities. It emphasizes tasks that require
integrating visual and textual information, assessing a
model’s performance in diverse, real-world scenarios.
MMBench employs a hierarchical ability taxonomy,
categorizing Perception and Reasoning as Level-1 (L-1)
abilities. This taxonomy is further refined into six Level-
2 (L-2) dimensions and twenty Level-3 (L-3) dimensions,
providing a detailed framework for assessment.

• MMVP [32] is a benchmark designed to assess the
fine-grained visual recognition capabilities of LVLMs
using CLIP-blind pairs. It comprises 150 image pairs,
each paired with a binary-option question. Each image is
evaluated separately, and an LVLM’s response is deemed
correct only if it answers both questions associated with
a pair accurately.

• MM-Vet [39] is a benchmark for evaluating LVLMs on
complex tasks. It defines 6 core vision-language capabil-



ities, including recognition, OCR, knowledge, language
generation, spatial awareness, and math. An LLM-based
evaluator is used to ensure consistent evaluation across
diverse question types. The dataset includes 187 images
from various online sources and collects 205 questions,
each of which requires one or more capabilities to answer.

• LLaVA-Bench1 includes 24 images depicting complex
scenes, memes, paintings, and sketches, accompanied by
60 challenging questions. Selected examples from this
dataset are used for qualitative comparisons of responses
generated by different decoding methods. Additionally,
following Yin et al. [38], we evaluate the accuracy
and level of detail in the generated responses using the
advanced LVLM, GPT-4V2.

B.2. More Implementation Details
In our experiments, we adhere to the default query for-

mat for the input data used in both LLaVA-1.5 [21], In-
structBLIP [9], and Qwen-VL [1]. We set α1 = 3,
α2 = 1 by default in our decoding process. Addition-
ally, we set γ = 0.2 for LLaVA-1.5 and γ = 0.4 for
InstructBLIP/Qwen-VL. We follow VCD [16] to implement
adaptive plausibility constraints [18]:

pθ(yt) = 0, if yt /∈ S(y<t), (23)

where S(y<t) = {yt ∈ S : pθ(yt|v,x,y<t) ≥
βmaxw pθ(w|v,x,y<t)}. Here, S is the whole vocabu-
lary of LVLM, and hyperparameter β ∈ [0, 1] controls the
truncation of the next token distribution. A larger β indi-
cates more aggressive truncation, keeping only the high-
probability tokens. In our implementation, we set the logits
for yt /∈ S(y<t) to −∞. By default, we set β = 0.1 for
all tasks. All experiments are conducted on a single 48GB
NVIDIA RTX 6000 Ada GPU.

B.3. Pilot Study Details
For Figure 4, we visualize 500 images from the

CHAIR [28] benchmark (left) and 3,000 images from
POPE [19] (right). For Figure 3, we analyze 3,000 POPE
images to examine the relationship between entropy devia-
tion and noise level.

B.4. Devision of Textual and Visual Tokens
In Eq. 8, textual and visual attention are obtained based

on the indices corresponding to each modality. The index
ranges for both modalities are listed below:
• LLaVA-1.5 [21]:

Textual indices – [0:35], [611:]; Visual indices – [35:611].
• InstructBLIP [9]:

Textual indices – [32:]; Visual indices – [0:32].
1https : / / huggingface . co / datasets / liuhaotian /

llava-bench-in-the-wild.
2https://openai.com/index/gpt-4v-system-card.

• Qwen-VL[1]:
Textual indices – [257:]; Visual indices – [1:257].

B.5. Details of Other Baselines

In this work, we mainly compare the performance of
our ONLY with two state-of-the-art contrastive-decoding
approaches: VCD [16] and M3ID [10]. The method and
implementation details for these approaches are provided
below:
• VCD [16] contrasts output distributions derived from

original and distorted visual inputs. Specifically, given
a textual query x and a visual input v, the model gener-
ates two distinct output distributions: one conditioned on
the original v and the other conditioned on the distorted
visual input v′, which is obtained by applying pre-defined
distortions (e.g., Gaussian noise mask) to v. Then, a new
contrastive probability distribution is computed as:

pvcd (yt) = softmax[(1 + α)fθ (y|v,x,y<t)−
αfθ (y|v′,x,y<t)]. (24)

In our implementation, we follow the default setting in
VCD [16] and set α = 1 for reproduction. To generate v′,
we use a total of 500 noise steps.

• M3ID [10] contrasts output distributions derived from
original visual inputs with those from pure text inputs,
which lack visual information. The final probability dis-
tribution is given by:

pm3id (yt) = softmax[fθ (y|v,x,y<t)+

1− e−λt

e−λt
(fθ (y|v,x,y<t)− fθ (y|x,y<t))]. (25)

Following their recommended best practice, we set the
hyperparameter λ, which balances the conditioned and
unconditioned models, to 0.02.

B.6. Dataset and Code Licensing

Datasets. We list the known license information for
the datasets below: POPE [19] and MMVP [32] bench-
marks are licensed under MIT License. CHAIR [28] is
made available under the BSD 2-Clause License. LLaVA-
Bench is available under Apache-2.0 License. MME-
Hallucination [11] benchmark dataset is collected by Xia-
men University for academic research only. MM-Vet [39]
dataset is under the CC BY-NC 4.0 license.

Code. In this work, we also use some code imple-
mentations from the existing codebases: LLaVA [21] and
VCD [16] are licensed under the Apache-2.0 License. In-
structBLIP [9] is under BSD-3-Clause License. Qwen-
VL [1] is under the Tongyi Qianwen License.

https://huggingface.co/datasets/liuhaotian/llava-bench-in-the-wild
https://huggingface.co/datasets/liuhaotian/llava-bench-in-the-wild
https://openai.com/index/gpt-4v-system-card


Table C1. Results on MME-Hallucination [11] benchmark. We report the average MME scores along with the standard deviation
across three random seeds for each subset. We also report the total scores achieved by the different methods across all four subsets in the
final column. Higher scores (↑) indicate better performance. The best results are bolded, and the second-best are underlined.

Model Method
Object-level Attribute-level

Total Score ↑
Existence ↑ Count ↑ Position ↑ Color ↑

LLaVA-1.5

Regular 173.75 (±4.79) 121.67 (±12.47) 117.92 (±3.69) 149.17 (±7.51) 562.50 (±3.96)

DoLa 176.67 (±2.89) 113.33 (±10.41) 90.55 (±8.22) 141.67 (±7.64) 522.22 (±16.78)

OPERA 183.33 (±6.45) 137.22 (±6.31) 122.78 (±2.55) 155.00 (±5.00) 598.33 (±10.41)

VCD 186.67 (±5.77) 125.56 (±3.47) 128.89 (±6.73) 139.45 (±12.51) 580.56 (±15.13)

M3ID 186.67 (±5.77) 128.33 (±10.41) 131.67 (±5.00) 151.67 (±20.88) 598.11 (±20.35)

Woodpecker 187.50 (±2.89) 125.00 (±0.00) 126.66 (±2.89) 149.17 (±17.34) 588.33 (±10.00)

HALC 183.33 (±0.00) 133.33 (±5.77) 107.92 (±3.69) 155.00 (±5.00) 579.58 (±9.07)

Ours 191.67 (±2.89) 145.55 (±10.72) 136.66 (±2.89) 161.66 (±2.89) 635.55 (±5.85)

InstructBLIP

Regular 160.42 (±5.16) 79.17 (±8.22) 79.58 (±8.54) 130.42 (±17.34) 449.58 (±24.09)

DoLa 175.00 (±5.00) 55.00 (±5.00) 48.89 (±3.47) 113.33 (±6.67) 392.22 (±7.88)

OPERA 175.00 (±3.33) 61.11 (±3.47) 53.89 (±1.92) 120.55 (±2.55) 410.56 (±9.07)

VCD 158.89 (±5.85) 91.67 (±18.34) 66.11 (±9.76) 121.67 (±12.58) 438.33 (±16.07)

M3ID 160.00 (±5.00) 87.22 (±22.63) 69.44 (±9.18) 125.00 (±7.64) 441.67 (±17.32)

Ours 180.00 (±5.00) 77.78 (±7.70) 74.44 (±12.05) 135.55 (±3.85) 467.77 (±8.55)

Qwen-VL

Regular 155.00 (±3.54) 127.67 (±13.36) 131.67 (±7.73) 173.00 (±9.75) 587.33 (±31.06)

VCD 156.00 (±6.52) 131.00 (±6.19) 128.00 (±3.61) 181.67 (±5.14) 596.67 (±11.61)

M3ID 178.33 (±2.89) 143.33 (±2.89) 150.00 (±2.89) 175.00 (±5.00) 646.66 (±8.50)

Ours 180.00 (±5.00) 146.67 (±5.00) 156.11 (±6.31) 178.33 (±2.89) 661.11 (±3.47)

Method LR AR RR FP-S FP-C CP Overall

Regular 30.51 71.36 52.17 67.58 58.74 76.35 64.09
VCD 30.51 73.37 53.04 67.92 57.34 77.03 64.60
M3ID 30.51 72.36 53.04 67.58 57.34 77.36 64.43
Ours 33.05 73.37 54.78 66.55 58.74 77.36 64.95

Table C2. Detailed results on MMBench benchmark. Abbrevi-
ations adopted: LR for Logical Reasoning; AR for Attribute Rea-
soning; RR for Relation Reasoning; FP-S for Fine-grained Percep-
tion (Single Instance); FP-C for Fine-grained Perception (Cross
Instance); CP for Coarse Perception. The best results are bolded.

C. More Experimental Results and Analysis
C.1. Full Results on MME-Hallucination

In Table C1, we present the full results on the MME-
Hallucination benchmark. From the results, our method
consistently outperforms others on both object-level and
attribute-level data across three LVLM backbones.

C.2. Full Results on MMBench
In Table C2, we present the overall performance on the

MMBench benchmark, as well as the detailed performance
across six Level-2 abilities: Logical Reasoning (LR), At-
tribute Reasoning (AR), Relation Reasoning (RR), Fine-
grained Perception - Single Instance (FP-S), Fine-grained

Method Rec OCR Know Gen Spat Math Total

Regular 30.8 19.0 14.5 17.9 26.9 11.5 26.1
VCD 35.6 21.9 18.3 21.9 28.9 3.8 30.9
M3ID 35.0 19.7 18.8 19.0 26.0 7.7 29.9
DoLA 37.2 22.1 17.9 21.0 26.3 7.7 31.7
OPERA 35.4 25.6 20.5 22.9 30.9 11.5 32.0
HALC 36.2 21.5 17.5 20.1 23.5 7.7 30.8
Ours 37.3 23.9 22.9 22.1 31.3 3.8 32.8

Table C3. Detailed results on MM-Vet benchmark. Abbrevi-
ations adopted: Rec for Recognition, OCR for Optical Character
Recognition, Know for Knowledge, Gen for Language Genera-
tion, Spat for Spatial Awareness, Math for Mathematics. The best
results are bolded, and the second best are underlined.

Perception - Cross Instance (FP-C), and Coarse Perception
(CP). We follow VCD [16] to conduct experiments on the
MMBench-dev set. Our method outperforms other base-
lines in most abilities and the overall score.

C.3. Results on MM-Vet
In Table C3, we present the overall performance on the

MM-Vet [39] benchmark, where we use LLaVA-1.5 as the
LVLM backbone. From the results, we observed that our
method consistently outperforms others on the MM-Vet
benchmark.



C.4. Evaluation on other advanced LVLMs
We further report results of LLaVA-NeXT-7B/13B [23]

on POPE (MS-COCO) benchmark in table C4. Our method
consistently outperforms existing approaches at both scales
while requiring only half the inference time and resources.

Method
LLaVA-NeXT-7B LLaVA-NeXT-13B

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

Regular 85.71 85.27 86.33 85.80 86.74 86.53 87.04 86.78
VCD 87.07 87.40 86.62 87.01 87.09 87.39 86.69 87.04
M3ID 87.48 87.64 87.27 87.45 87.84 87.95 87.71 87.83
Ours 87.96 88.59 87.13 87.86 87.94 87.31 88.80 88.05

Table C4. Detailed results with LLaVA-NeXT. The best results
are bolded, and the second best are underlined.

D. More Ablation Studies and Analysis
D.1. Effects of α1 and α2 in Adaptive Decoding

In Section 3, we introduce collaborative and contrastive
decoding, along with hyperparameters α1 and α2, which
regulate the influence of the textual-enhanced branch. Ta-
bles D5 and D6 analyze their impact, showing that the de-
fault values α1 = 3 and α2 = 1 yield the best perfor-
mance across benchmarks. Notably, setting these to 0 re-
duces our approach to standard decoding, confirming that
adaptive decoding significantly enhances hallucination mit-
igation in LVLMs.

D.2. Effect of β in Adaptive Plausibility Constraint
We perform an ablation study on β, introduced in Eq. 23,

by varying its value from 0 to 0.5 while keeping all other hy-
perparameters fixed. As shown in Table D7, setting β = 0,
which removes the constraint, leads to suboptimal perfor-
mance across both benchmarks. Our method achieves the
best results with β = 0.1, which we adopt as the default
setting.

D.3. Effect of γ in Adaptive Plausibility Constraint
We further studied the influence led by the threshold γ

for adaptive decoding. The results in Table D8 show that
setting γ = 0.2 reaches the optimal result for LLaVA-1.5.
Besides, we keep γ = 0.4 for other baseline LVLMs.

D.4. Scaling Up the LVLMs
We extend our evaluation to the 13B variant of the

LLaVA-1.5 model to assess the scalability of our approach.
Table D9 compares our results with state-of-the-art methods
across all three subsets of the POPE benchmark using the
13B model. Our findings show that increasing model size
does not mitigate hallucination issues, as the 7B and 13B
models exhibit comparable performance. Notably, ONLY
consistently outperforms other approaches across all sub-
sets, demonstrating its effectiveness and scalability.

Values
POPE CHAIR

Acc. Prec. Rec. F1 CHAIRS CHAIRI

α1 = 0 88.13 94.55 80.93 87.21 23.5 8.6
α1 = 1 88.27 94.50 81.27 87.38 22.4 7.8
α1 = 2 88.87 89.63 88.10 88.86 21.5 7.2
α1 = 3 89.70 89.95 88.27 89.10 20.0 6.2
α1 = 4 88.37 88.85 87.94 88.39 22.3 7.6

Table D5. Sensitivity analysis of hyperparameter α1. We
present the performance of our approach, based on the LLaVA-
1.5 backbone, across two benchmarks for varying values of α1.
Note that we fix α2 = 1 in this experiment.

Values
POPE CHAIR

Acc. Prec. Rec. F1 CHAIRS CHAIRI

α2 = 0 86.50 86.35 88.13 86.72 24.8 9.3
α2 = 1 89.70 89.95 88.27 89.10 20.0 6.2
α2 = 2 87.67 96.69 78.00 86.35 22.4 7.6
α2 = 3 87.37 97.14 77.00 85.91 23.4 7.3
α2 = 4 87.13 97.12 76.53 85.61 24.2 8.1

Table D6. Sensitivity analysis of hyperparameter α2. We
present the performance of our approach, based on the LLaVA-
1.5 backbone, across two benchmarks for varying values of α1.
Note that we fix α1 = 3 in this experiment.

Values
POPE CHAIR

Acc. Prec. Rec. F1 CHAIRS CHAIRI

β = 0 87.70 93.40 81.13 86.84 24.6 10.1
β = 0.05 88.17 94.21 81.33 87.30 23.7 9.6
β = 0.1 89.70 89.95 88.27 89.10 20.0 6.2
β = 0.25 89.56 89.48 87.63 88.55 21.4 7.6
β = 0.5 89.47 89.83 86.53 88.15 22.1 7.2

Table D7. Sensitivity analysis of hyperparameter β. We present
the performance of our approach, based on the LLaVA-1.5 back-
bone, across two benchmarks for varying values of β.

Values
POPE CHAIR

Acc. Prec. Rec. F1 CHAIRS CHAIRI

γ = 0.0 89.13 90.41 86.38 88.35 23.5 8.2
γ = 0.1 89.20 89.88 86.73 88.28 22.6 8.1
γ = 0.2 89.70 89.95 88.27 89.10 20.0 6.2
γ = 0.3 89.40 93.20 85.00 88.91 21.2 7.1
γ = 0.4 89.03 93.99 83.40 88.38 21.7 7.0
γ = 0.5 89.15 92.26 84.29 88.10 22.4 7.6
γ = 0.6 89.21 91.78 85.39 88.47 23.1 8.1

Table D8. Sensitivity analysis of hyperparameter γ. We present
the performance of our approach, based on the LLaVA-1.5 back-
bone, across two benchmarks for varying values of γ.

D.5. Details about Ablation Studies on Layer Selec-
tion and Strategies

In Section 4.4, we conduct two ablation studies to val-
idate our proposed method. Detailed results are provided



Table D9. Results on POPE [19] benchmark using 13B-sized
LLaVA-1.5. Higher (↑) accuracy, precision, recall, and F1 indi-
cate better performance.

Setup Method
LLaVA-1.5

Acc. ↑ Prec. ↑ Rec. ↑ F1 ↑

M
S-

C
O

C
O

Random

Regular 82.53 78.57 89.47 83.67
VCD 84.80 80.67 91.53 85.76
M3ID 85.37 81.30 91.87 86.26
Ours 88.63 89.66 87.33 88.48

Popular

Regular 80.53 76.17 88.87 82.03
VCD 82.23 76.88 92.20 83.84
M3ID 82.60 77.91 91.00 83.95
Ours 85.47 83.25 88.80 85.94

Adversarial

Regular 75.80 70.41 89.00 78.62
VCD 77.33 71.44 91.07 80.07
M3ID 77.43 71.65 90.80 80.09
Ours 80.63 76.33 88.80 82.10

below.
Selection of Layer for Textual Enhancement: In this

experiment, we select a single layer from the total of 32 lay-
ers for textual enhancement. The F1 scores for our method
across the 32 layers are as follows: [85.37, 85.20, 84.74,
84.7, 85.11, 84.68, 85.17, 84.69, 85.18, 84.73, 84.7, 84.74,
84.9, 84.94, 84.88, 85.06, 84.62, 84.67, 84.83, 85.15, 84.72,
84.76, 84.99, 85.03, 84.7, 84.93, 84.76, 84.9, 84.8, 85.12,
84.62, 84.76]. In comparison, the results for regular decod-
ing, VCD [16], and M3ID [10] are 81.27, 83.38, and 84.05,
respectively.

Other Strategies for Textual Enhancement: In Ta-
ble 6, we explore additional strategies for textual enhance-
ment, which include:

• aVℓ,i ← 0: Setting the visual attention in the attention ma-
trix to zero, inspired by M3ID [10], which uses a visual-
free input for contrastive decoding;

• aVℓ,i ← aVℓ,i + ε: Adding noise ε to the visual attention,
inspired by VCD [16], which uses a distorted visual input
for contrastive decoding;

• aTℓ,i ← aTℓ,i ∗ 2: Enhancing textual attention by directly
multiplying it by 2;

• Ratio ←
∑

aT /
∑

aV : Instead of using the text-to-
visual entropy ratio as the criterion to select textual-
enhanced heads, we use the ratio between the sum of
textual attention and visual attention. Heads with a ratio
lower than the average across all heads are masked out, as
described in Eq. 12.

All of these strategies require minimal additional compu-
tation, providing an efficiency advantage over other meth-
ods [10, 16]. This demonstrates the effectiveness of us-
ing just one layer for mitigating hallucinations in LVLMs,
rather than relying on an extra full-process inference.

E. More Case Studies
E.1. Details about GPT-4V-Aided Evaluation

Following VCD [16], we use GPT-4V to evaluate re-
sponses in open-ended generation scenarios, scoring them
based on accuracy and detailedness. Leveraging GPT-4V’s
strong human-like capabilities, it can detect incorrect col-
ors, positions, and relationships, allowing for a thorough
evaluation of the responses.

Specifically, we apply the prompt in Table E10 to instruct
GPT-4V to rate two responses on a scale from 1 to 10 for
both accuracy and detailedness:
• Accuracy measures the consistency between the re-

sponses/descriptions generated by the LVLMs and the
given image. A lower score is given if GPT-4V detects
any inconsistencies in the content.

• Detailedness evaluates the depth and specificity of the re-
sponses. A higher score is awarded if the response in-
cludes comprehensive descriptions, captures fine-grained
details of the image, and provides well-elaborated expla-
nations. Conversely, a lower score is given if the response
is vague or lacks sufficient detail.

E.2. More Qualitative Results
In Figure E1, we present additional case studies from

LLaVA-Bench to qualitatively demonstrate the effective-
ness of our methods in mitigating hallucinations. We also
include GPT-4V evaluations, providing accuracy and de-
tailedness scores for each instance.

F. Future Work
In future work, we aim to further improve the speed of

our method and develop a more efficient hallucination mit-
igation approach that surpasses the original LVLM speed,
leveraging efficient LVLM techniques like FastV [4] and
VScan [42]. Additionally, we plan to explore our method’s
potential for video hallucination mitigation to demonstrate
its adaptability across various tasks.



Description:
AI that scores image description accuracy and detailedness.

Instructions:
You are an AI designed to evaluate and score the performance of two AI assistants in describing a given image. Your
primary focus is on the accuracy and detailedness of their descriptions. You will assess the accuracy by checking
for hallucinations - any part of the description that is inconsistent with the image content. For detailedness, you will
consider how rich the response is in necessary details, excluding any hallucinated parts. You will provide scores on
a scale from 1 to 10 for each assistant separately, based on these criteria. After scoring, you will offer an explanation
for your evaluation, ensuring it is free from bias and not influenced by the order of presentation of the responses.

Input format:

[Assistant 1]
{Response 1}
[End of Assistant 1]

[Assistant 2]
{Response 2}
[End of Assistant 2]

Output format:

Accuracy:
Scores of the two answers:
Reason:

Detailedness:
Scores of the two answers:
Reason:

Table E10. GPT-4V-aided evaluation setup. We present the prompt we provided to GPT-4V to evaluate the LVLM responses
based on accuracy and detailedness.



Figure E1. Case studies on the LLaVA-Bench benchmark. We
compare the responses generated by regular decoding and our
method using LLaVA-1.5. GPT-4V-aided evaluation results are
also provided alongside the responses. Hallucinated and accurate
content is highlighted in red and blue.
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