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Indoor Sem. Seg. ScanNet [7] ScanNet200 [11]

Methods with same TTA Val Test Val Test

MinkUnet [5] 72.2 73.4 25.0 25.3
OctFormer [15] (Rep.) 74.6 70.7 31.9 31.0
OctFormer [15] (Off.) 75.7 - 32.6 -
Swin3D [18] (Off.) 76.4 - - -
Swin3D [18] (Rep.) 76.6 71.4 - -
PTv3 [17] (Off.) 77.5 73.6 35.2 34.0
SP2T 78.7 74.9 37.0 35.2

Table 1. Indoor instance segmentation with same TTA between Val
and Test set. Rep. means the model uses the code of Pointcept and
reproduces it by ours. Off. means the model uses official weight
and code.

Algorithm 1 Pytorch-Style Pesade-code of Spatial-wise Sampling

def Spatial_Wise_Sampling(

s_min: float, s_max: float, # min/max cell size

cnt_low: int, cnt_high: int, # target count range

max_iter: int, # max iterations

grid_range: float # AABB size

) -> float: # optimal grid size

l, r = s_min, s_max

for _ in range(max_iter):

grid_size = (l + r) / 2

grid_shape = ceil(grid_range / grid_size)

cell_count = prod(grid_shape)

if cnt_low <= cell_count <= cnt_high:

return grid_size

elif cell_count < cnt_low:

r = grid_size # too sparse

else:

l = grid_size # too dense

return (l + r) / 2 # fallback

A. Experiment and Discussion

A.1. ScanNet Test Set
According to [12, 17, 18], there is a significant test time
augmentation (TTA) difference between the val and test sets
of Scannet [7] and Scannet200 [11]. The additional TTA in-
cludes incorporating data from the validation set for training,
combining results from multiple training models [10], and
applying over-segmentation [8].

For a fair comparison, we evaluated some SOTA mod-
els [5, 15, 17, 18] with an official or reproduction weights
file using Val’s TTA, as shown in Fig. 1. The experimental
findings indicate that, without employing additional TTA,
the result in the test set for the majority models [15, 17, 18]
tends to be less than those on the validation set, rather than

(a) Ground Truth (b) PTv3 (c) Ours

Figure 1. Result Comparison in ScanNet.

(a) Ground Truth (b) PTv3 (c) Ours

Figure 2. Failed cases in ScanNet.

exceeding them. And it can be found that our model archive
the best result both in the val and test set of Scannet and
Scannet200.

We are still working on over-segmentation and may up-
date our model’s test results employing over-segmentation
in the final version of the paper. Furthermore, we recom-
mend that future research ensure consistency in the TTA
between the validation and test sets or at least make the TTA
on the test set openly available. In 3D understanding, the
focus should be on improving network design and training
methodologies rather than using more testing tricks.

A.2. Pesade-code of Spatial-wise Sampling

The pesade-code of spatial-wise sampling is shown in Alg. 1.
Spatial-wise sampling efficiently discerns the ideal proxy
spacing by considering the AABB sizes of various points.
The method is designed to maintain the proxies count within
the bounds of Nmax and Nmin, using a bisection approach
to determine the optimal proxy spacing Lp. If the number
of proxies exceeds Nmax, the proxy spacing Lp is reduced,
and the total number of proxies is recalculated.



Figure 3. Visualization of the point-point attention map under FPS-based sampling. The red star represents the current point.

TRB Share TRB mIoU mAcc allAcc Time

78.33 86.17 92.36 81ms
78.71 86.23 92.51 74ms

Table 2. Ablation study about sharing of TRB.

(a) MSE of TRB in Proxy-Point (b) MSE of TRB in Proxy-Proxy

Figure 4. (a) MSE of TRB in different proxy-point interaction
layers. (b) MSE of TRB in different proxy-proxy interaction layers.

A.3. Visualization

Result Comparison. Fig. 1 compares the visualization of
our method and PTv3 [17] on the Scannet dataset [7]. Specif-
ically, Fig. 1 (a) presents the ground truth, Fig. 1 (b) depicts
the result from PTv3, and Fig. 1 (c) illustrates our result. The
visualizations indicate that, due to the global receptive field
provided by the proxy, our method achieves more consistent
and dependable segmentation results overall, thus enhancing
segmentation performance.
Failed Cases. Fig. 2 illustrates the failed cases of our method
on the Scannet dataset [7]. In Fig. 2, it is apparent that the
proxy has failed to address the classification error attributed
to location fusion. Consequently, achieving a proper balance
between local and global information still requires further
investigation.
Over-fitting due to FPS-based Sampling. Within the abla-
tion study, the experiments show that FPS-based sampling
performs poorly compared to alternative sampling methods.
We visualized the point-proxy attention maps for FPS-based
sampling methods to investigate this further, as illustrated
in Fig. 3. The visualization demonstrates that the attention
map resulting from FPS-based sampling exhibits static and
repetitive patterns, with its attention not influenced by the
proxy’s location. Consequently, we contend that the sam-
pling method based on FPS leads to significant overfitting of
the model because of the scene leakage from FPS.

Efficiency Indoor (ScanNet [7]) Outdoor (nuScenes [4])

Methods mIOU Latency mIOU Latency

MinkUNet [5] 72.2 90ms 73.3 48ms
PTv2 [16] 75.4 191ms 80.2 146ms
PTv3 [17] 77.5 61ms 80.4 44ms
PTv3† [17] 77.6 73ms 80.5 53ms
SP2T 78.7 74ms 81.2 54ms

Table 3. Ablation study about efficiency of SP2T. PTv3† refers to
PTv3 with an increased number of channels to maintain the same
latency as SP2T.

A.4. Shared Table Relative Bias

During the implementation phase, the point and proxy posi-
tions remain unchanged within the same layer. This means
that for each instance of sparse attention in this layer, the
relative position input provided to the relative position encod-
ing module remains constant. Consequently, it is possible to
compute the relative bias for a layer with a single invocation.
Building on this optimization, we share all relative bias val-
ues across each layer, thus reducing model complexity and
computational demand. Additionally, since the proxy posi-
tions are constant throughout the network, we test sharing
the relative bias amongst proxies across the entire network
and different layers.

Tab. 2 compares the accuracy of the model w/ and w/o
the shared TRB. The experiment shows that the shared TRB
improves the model’s accuracy and reduces the inference
time. Furthermore, Fig. 4 shows the MSE distance for TRB
during point-proxy and proxy-proxy interaction in different
layers. TRB demonstrates stage-level similarity in the proxy-
proxy interaction, while all TRB is similar in the point-proxy
interaction. Consequently, the sharing of TRB improves
model accuracy and reduces inference time.

A.5. Model efficiency

Tab. 3 presents the model’s performance based on accu-
racy and latency for both the indoor (ScanNet) and outdoor
(nuScenes) datasets, tested on a single RTX 4090. It is im-
portant to note that scaling the PTv3 model to match the size
of SP2T does not substantially improve the metrics for either
dataset. Our model achieves an ideal compromise between
accuracy and speed while maintaining consistent accuracy.



Indoor Semantic Indoor Instance

Config Value Config Value

framework / frame PointGroup
optimizer AdamW optimizer AdamW
scheduler Cosine scheduler Cosine
criteria CrossEntropy (1) criteria /

Lovasz [3] (1)
weight decay 5e-2 weight decay 5e-2
batch size 12 batch size 12
datasets ScanNet / S3DIS datasets ScanNet

First Stage:
learning rate 5e-3 learning rate 5e-3
block lr scaler 0.1 block lr scaler 0.1
warmup epochs 40 warmup iters 40
epochs 800 epochs 800

Second Stage:
learning rate 2e-4 learning rate 2e-4
block lr scaler 1.0 block lr scaler 1.0
warmup epochs 20 warmup iters 20
epochs 400 epochs 400

Table 4. Indoor semantic / instance segmentation settings.

B. Implementation Details

Our implementation primarily utilizes Pointcept [6], a spe-
cialized codebase focusing on point cloud perception and
representation learning. The details of our implementation
are detailed in this section.

B.1. Training Settings
Datasets and metrics. The ScanNet dataset [7, 11], fre-
quently utilized in indoor real-world down-stream tasks, con-
tains 1,513 room scans derived from RGB-D frames, with
1,201 scenes designated for training and 312 reserved for
validation. Each point was categorized into one of the 20
semantic labels in ScanNet [7] and 200 semantic labels in
ScanNet200 [11]. In contrast, the S3DIS dataset [1] cov-
ers 271 rooms in six areas within three buildings with 13
categories.

nuScenes [4] consists of 40,157 annotated samples, each
containing six monocular camera images that cover a 360-
degree field of view and a 32-beam LiDAR. According to
the specifications of nuScenes, the dataset comprises 1000
scenarios, 1.4M images, and 400K point clouds. The training
set covers 700 scenarios, and the validation and test sets
contain 150 scenarios each. SemanticKITTI [2] originates
from the KITTI Vision Benchmark Suite and is comprised of
22 sequences, with 19 designated for training and the other
3 reserved for testing. Waymo [14] is a frequently utilized
benchmark for outdoor 3D perception, comprising a total of
1,150 point cloud sequences (exceeding 200K frames). Each
frame encompasses an extensive perception range of 150m
× 150m.

For segmentation metrics, we utilize the mean class-wise

Outdoor Semantic

Config Value Config Value

optimizer AdamW batch size 12
scheduler Cosine weight decay 5e-3
criteria CrossEntropy (1) datasets NuScenes

Lovasz [3] (1) Sem.KITTI
Waymo

First Stage:
learning rate 2e-3 epochs 50
block lr scaler 1e-1 warmup epochs 2

Second Stage:
learning rate 2e-4 epochs 30
block lr scaler 1.0 warmup epochs 1

Table 5. Outdoor semantic segmentation settings.

Outdoor Detection

Config Value Config Value

optimizer AdamW datasets Waymo
scheduler Cosine weight decay 1e-2
framework CenterPoint batch size 12
First Stage:
learning rate 3e-3 epochs 24
block lr scaler 1e-1 warmup epochs 0

Second Stage:
learning rate 3e-4 epochs 12
block lr scaler 1.0 warmup epochs 0

Table 6. Outdoor object detection settings.

intersection over union (mIoU) as the principal metric in
ScanNet, ScanNet200, and S3DIS. Furthermore, following
previous work, area 5 in S3DIS is designated for testing
with a 6-fold cross-validation. For dectection metircs, all
results are assessed by the conventional protocol employing
3D mean Average Precision (mAP) and its weighted version
based on heading accuracy (mAPH).
Indoor semantic segmentation. The setting for indoor
semantic segmentation is displayed in Tab. 4. The SP2T
model was trained in two phases. In the first stage, emphasis
is placed on local fusion, using the local fusion network
for separate training on Scannet [7] or S3DIS [1]. Hence,
the model incorporates the weights of local fusion into the
second training phase.
Indoor instance segmentation. Followed by PTv3 [17], we
use PointGroup [9] as our foundational framework. Specifi-
cally, our configuration mainly follows PTv3. In addition, as
with semantic segmentation, the model was trained in two
stages.
Outdoor semantic segmentation. Similarly to indoor seg-
mentation, Tab. 5 outlines the training parameters for SP2T
when applied to outdoor segmentation. Similarly to our
approach for indoor segmentation, the model undergoes a
two-stage training process. In the first stage, a distinct lo-
cal fusion network is explicitly trained for dataset [2, 4].
Then, for the second stage, the model is initialized with the



Config Indoor Outdoor

Proxy embedding depth 2
Proxy embedding temperature 10 1
Proxy init method Spatial-wise
Proxy number 160 400
Proxy search range [0.0, 1.0] [0.0, 20.0]
Proxy search iter 10 16
Association method Vertex-based
Association dim 3 2
Attention channels per head 16
Attention dropout 0.0
TRB table size 16
TRB table strength 1.0
TRB table temperature [0.5, 2.5]
Point-Proxy TRB input scale 2.5 0.2
Proxy-wise TRB input scale 0.4 0.04
Drop path 0.3

Table 7. Model settings.

Augmentations Parameters Indoor Outdoor

random dropout dropout ratio: 0.2, p: 0.2 ✓ -
random rotate axis: z, angle: [-1, 1], p: 0.5 ✓ ✓

axis: x, angle: [-1 / 64, 1 / 64], p: 0.5 ✓ -
axis: y, angle: [-1 / 64, 1 / 64], p: 0.5 ✓ -

random scale scale: [0.9, 1.1] ✓ ✓
random flip p: 0.5 ✓ ✓
random jitter sigma: 0.005, clip: 0.02 ✓ ✓
elastic distort params: [[0.2, 0.4], [0.8, 1.6]] ✓ -
auto contrast p: 0.2 ✓ -
color jitter std: 0.05; p: 0.95 ✓ -
grid sampling grid size: 0.02 (indoor), 0.05 (outdoor) ✓ ✓
sphere crop ratio: 0.8, max points: 128000 ✓ -
normalize color p: 1 ✓ -

Table 8. Data augmentations.

parameters of this local fusion network and continues to
train.

Outdoor object detection. Tab. 6 outlines the training pa-
rameters for SP2T when applied to outdoor object detection.
The model is also trained through a two-stage approach. Ini-
tially, a specific local fusion network is exclusively trained
for Waymo [14]. Subsequently, in the second stage, the
model starts with the parameters from this local fusion net-
work, and training is resumed.

B.2. Model Settings

Tab. 7 presents a comprehensive overview of our model’s
configuration, focusing primarily on the proxy’s initializa-
tion and association method, table-based relative bias and
dropout [13]. Furthermore, the parameters for local fusion
mirror those of the specific methods [5, 17], and the proxy
channel is the same as the channel of local fusion.

B.3. Data Augmentations
As illustrated in Tab. 8, we adopted the PTv3 [17] data aug-
mentation approach to maintain fairness during both training
and evaluation. In addition, we applied the same data en-
hancement to the test set and evaluated other models using
this augmentation.
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