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Supplementary Material

In this supplementary material, we first present the
implementation detail of the physical simulation task in
Sec. A. Then, we present more object query comparisons in
Sec. B and Sec. C. In Sec. D, we demonstrate the robustness
of our editing method and provide additional editing results
on two scenes from the Mip-NeRF360 dataset [1]. Finally,
in Sec. F and Sec. G, we provide more ablation study re-
sults, including both qualitative and quantitative analysis.

A. Application of Physical Simulation

In our experiment, we adopt PhyGaussian [12], a Gaussian-
based simulator implemented via MLS-MPM [4], as our
physical engine. The Gaussians are regarded as particles to
perform the simulation. For computational efficiency pur-
poses, we remove the background using a bounding box and
retain only the foreground particles whose opacity α > 0.02
for simulation. Specifically, in our experiments, we first
use a query operation to select the object to be simulated.
This object is then assigned Young’s modulus E = 2e8 and
Poisson’s ratio ν = 0.4 to prevent deformation during sim-
ulation. The remaining particles within the bounding box,
which serve as sticky boundary conditions with lower phys-
ical coefficients (E = 2e6, ν = 0.3), enable the simulated
object to be easily separated from the surroundings. All of
these particles are subsequently discretized into a grid 643.
For all the physical simulation experiments, we simulate a
total of 30 frames. All particles in this application are as-
signed von Mises Plasticity material.
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Figure 1. Physical simulation by applying the external forces (red
arrows) to drag the selected objects.

B. More Text Query Results

We visualize more results of the open-vocabulary text query
task in Figure 2, where our method demonstrates a clear ad-
vantage in selecting the complete 3D objects. By contrast,
OpenGaussian [11], due to its codebook-based clustering
approach, often fails to group an entire object into a sin-
gle cluster, as seen with the ”waldo” in the first row and

the ”stuffed bear” in the second row. Similarly, GsGroup-
ing [13] frequently includes incorrect object IDs for the
query, as seen with the ”stuffed bear” in the second row and
the ”glass of water” in the third row. Meanwhile, SAGA [2]
uses a limited number of clusters and is less aware of spa-
tial information, making it prone to missing matches and
selecting incorrect regions.

In Table 2 and Figure 6, we further report both the quan-
titative and qualitative results of open-vocabulary querying
on Mip-NeRF360 [1], evaluated with the vocabulary pro-
vided by LEGaussian [10]. Our results consistently outper-
form existing approaches, achieving significant improve-
ments in both mIoU and mBIoU. These gains hold across
diverse scenes and object types, and are especially observed
on thin, partially occluded, or clutter-surrounded objects.
Qualitative results further validate that our selected regions
can align well with the entire instance, whereas others al-
ways leave fragmented or jagged boundaries.

C. More Click Query Results
We report more object selection results on LLFF [8] in
Figure 7 and Table 3, using the scribbles provided by
NVOS [9]. As input, we first shrink the scribbles into
skeleton lines and then use the pixels on the skeleton as
click query points. By contrast, our method yields more
accurate segmentation for complex objects like fern and di-
nosaur fossils, benefiting from the use of localized anchor-
Gaussian and our anchor-graph-based strategy.

D. More Object Editing Results
Directly removing the selected Gaussians for the objects
makes artifacts in the remaining scene, due to the miss-
ing observations of the occluded region across all views,
as shown in the left column of Figure 3. Thus an inpainting
operation is necessary to fill the holes.

We compare the two inpainting techniques adopted by
GsGrouping [13] and our approach, which differ in local-
izing the artifact regions to be repaired. GsGrouping uses
Deva Tracking [3]. As shown in the top row of the figure,
due to ambiguous features and the difficulty of precisely
identifying the hole regions, most viewpoints fail to main-
tain a stable artifact mask, resulting in suboptimal editing
outcomes. By contrast, our anchor-graph structure enables
an accurate selection of the object including the inner Gaus-
sians, thus providing a precise localization of the artifact
region by extending the boundary of the selected object,
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Figure 2. Open-vocabulary 3D object selection on the LERF dataset [5]. AG2aussian outperforms other approaches in accurately identify-
ing the clean and complete 3D objects corresponding to text queries.
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Figure 3. Object removing editing results with artifact regions lo-
calized and inpainted with different techniques. Compared to the
DEVA-Tracking [3] adopted by GsGrouping [13] (top row), our
anchor-graph structured representation (bottom row) enables an
accurate localization of the artifact regions and thus makes real-
istic inpainting results without affecting the surrounding objects.

yielding more reliable and visually coherent editing results.
To further validate the performance of our artifact local-

ization, we performed editing experiments on two scenes
from the Mip-NeRF360 dataset [1]. For the counter scene,
we removed three objects of varying sizes, including a
transparent kettle. As for the kitchen scene, we evaluated
our method’s ability to repair large hole regions resulting

Input Artifact Location Editing Result

Figure 4. More editing results on MipNeRF360 [1] using our
graph-based artifact localization technique.
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Figure 5. More object recoloring and insertion editing results on
MipNeRF360 [1].

from object removal. As shown in Figure 4, our approach
accurately identifies and fills the hole regions, resulting in
high-quality and consistent scene editing.
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Figure 6. Open-vocabulary 3D object selection on the Mip-NeRF360 dataset [1].
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Figure 7. Scribbles-based 3D object selection on the LLFF dataset [1].

Additionally, we present the results of object recoloring
and insertion of a complex scene in Figure 5, which contains
many objects close to each other and has occlusions across
multiple views.

E. Computation Overhead
The maximum reserved memory, training time, and ren-
dering FPS are reported in Table 1. For our anchor-graph
structure, we store the anchors only for the occupied voxels
and the sparse edges between neighbor anchors, incurring
minimal additional memory. On the other hand, this struc-
ture regularizes the Gaussian primitives to lie around the
object surfaces, which largely reduces the number of Gaus-
sians and thus the training time. Notably, we do not intend
to claim a faster rendering speed, since we implemented

a CUDA-based module to render RGB, feature map, and
other outputs in one pass, while SAGA and OpenGaussian
need to invoke the renderer multiple times.

Table 1. Computation Overhead on LERF dataset [5].

Methods Memory↓ Train Time↓ Rendering FPS↑

SAGA 13.29 GB 33.63 mins ∼252
GsGrouping 20.21 GB 51.21 mins ∼114

OpenGaussian 16.81 GB 74.31 mins ∼96
w/ codebook 12.91 GB 69.97 mins ∼185

Ours 7.56 GB 39.55 mins ∼515



Table 2. Quantitative evaluation of text querying on Mip-NeRF360 dataset [1].

mIoU. ↑ mBIoU. ↑Methods
bicycle bonsai counter garden kitchen room Mean bicycle bonsai counter garden kitchen room Mean

SAGA 1.58 32.38 19.24 19.21 17.26 0.16 14.97 2.13 24.21 15.68 15.36 9.33 0.2 11.15
GsGrouping 10.52 68.73 47.73 34.59 61.7 41.22 44.08 8.89 53.62 44.61 29.52 54.52 36.04 37.86
OpenGaussian 25.97 33.2 47.52 25.87 41.42 41.7 35.94 15.41 26.34 41.59 20.87 21.7 35.84 26.95
Ours 31.15 53.47 61.89 34.46 62.26 50.76 48.99 18.94 48.49 58.85 31.52 41.77 45.03 40.76

Table 3. Quantitative evaluation of click querying on LLFF dataset [8].

mIoU. ↑ mBIoU. ↑Methods
fern flower fortress horns c horns l leaves orchids trex Mean fern flower fortress horns c horns l leaves orchids trex Mean

SAGA 82.53 95.15 98.15 92.83 94.57 92.88 88.82 83.99 91.61 75.12 80.87 78.18 68.44 72.2 77.89 74.76 70.25 75.04
GsGrouping 80.70 57.72 97.75 96.78 94.58 70.5 36.13 51.69 72.73 64.74 35.99 55.02 69.74 73.57 48.68 26.09 49.38 52.56
OpenGaussian 70.74 62.63 94.91 79.81 77.81 87.68 59.88 68.88 75.29 58.81 36.75 67.38 47.24 52.85 57.81 43.49 66.25 53.82
Ours 82.01 95.38 98.59 97.36 96.31 93.89 90.76 87.02 92.66 77.85 81.73 91.06 81.24 83.54 80.71 80.42 85.24 82.64

F. More Ablation Study Results

Table 4 presents the complete ablation study results on the
LERF dataset [5]. Overall, our graph-related operations sig-
nificantly improve both mask completeness and boundary
quality, as evidenced by notable gains in mIoU and mBIoU.

To further assess the importance of these operations for
the query task, we demonstrate the selected Gaussians and
the remaining scenes. Figure 8 provides a full visualization
of all ablation variants. Our graph-based region growing
effectively prevents the selection of Gaussians outside the
target object, as demonstrated by the comparison between
the w/o GraphSeg variant and our full method. More-
over, our graph propagation smooths the feature field within
the object and enhances a clean Gaussian selection, effec-
tively eliminating inner Gaussians in the remaining scenes,
as shown by the comparison between w/o Lprop and our
full method. Additionally, our anchor-Gaussian structure
effectively constrains the local distribution of Gaussians,
as demonstrated by the comparison between w/o ag and
w/o Graph. Overall, our full method not only enables the
clean selection of objects but also ensures the comprehen-
sive inclusiveness of the inner object Gaussians.

G. Comparison with Other Structured-GSes

Several recent works explore structured 3DGS, but for dif-
ferent goals and thus framework designs. Scaffold-GS [7]
proposes the Anchor-Gaussian structure to distribute local
3D Gaussians and predicts their view-adaptive attributes.
However, it does not localize the Gaussians to distribute
within the voxel of the corresponding anchor, and elim-
inates the anchor-graph for the feature propagation. Su-
perGSeg [6] proposes to cluster the optimized Gaussians
into Super-Gaussians and distill the semantic features to
comprehensively understand 3D scenes. However, it lacks
anchor-graph-based propagation to further refine the local
feature fields and requires a much larger memory cost dur-
ing training.

Therefore, we perform the ablation study experiments
(w/o localization and w/ codebook) to validate the effec-
tiveness of our design, as shown in Table 5. Specifically, for
w/o localization, we remove the scaling constraint (Eq. 2)
and structured spatial regularization (Eq. 3-4), to evaluate
the effectiveness of our anchor-graph structure compared to
ScaffoldGS and SuperGSeg. For w/ codebook, we preserve
our stage 1 and introduce a learnable codebook to emulate
the Super-Gaussians proposed by SuperGSeg. Our full ap-
proach significantly outperforms both variants in segmenta-
tion accuracy, demonstrating the advantages of our anchor-
graph–based localization and propagation.
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structure, and the Graph-based operation. The advantage of the Anchor-Gaussian is demonstrated by comparing w/o GraphSeg with
a variant that uses 3DGS without our anchor-graph (w/o ag). The effectiveness of our Graph-based Operation respectively adopting
w/o graph, w/o Lprop and w/o GraphSeg.
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